GENERAL REPORT

 perations of the Sutoen of Fndiat, COMPRISINGBREAT TRIGONOMETRICAL, THE TOPOGRAPHICAL, AND THE REVENUE SURIEYS UNDER THE GOVERNMENT OF INDIA,

DURING
I879-80.

RRFPARED UNDER THE SUPERINTENDENCE

MAJOR-GINERAL J. T. WALKER, C.B., R.E., F.R.S., \&C., SURVEYOR-GENERAL OF INDIA.

CALCUTTA:
OFFICE OF THE SUPERINTENDENT OF GOVERNMENT PRINIIVG. 1881.

GENERAL REPORT

on the

Operations of the Surbey of Endia,

COMPRISING

THE GREAT TRIGONOMETRICAL, THE TOPOGRAPHICAL, AND THE REVENUE SURVEYS UNDER THE GOVERNMENT OF INDIA,

during

PREPARED UNDER THE SUPERINTENDENCE

OF
Major-General J. T. Walker, C.B., R.E., F.R.S., \&C., SURYEYOR-GENERAL OF INDIA.

CALCUTTA :

PRINTED EY THE SUPERINTENDENT OF GOVERNMENT PRINTING, 8, HASTINGS STREET.

OONJENTS.

General Report ("xplanatory and descriptive) $\quad 1-4$

PART I.

SUMMARY OF THE OPERATIONS OF THE TRIGONOMETRICAL, 'IOPOGRAPHICAL, AND REVENUE SURVEY PARTIES.

PART II.

Pages. Pages.

Head-Quarters Offees.

1. Surveyor Meneral's Office .
. $50 \quad 56$
i. Lithographic Offue. . . . 5568
2. Photographic Office
$55-68$
3. Mathematical Instrument Depurtment
4. Trigonometvical Surves Office

Tabular Ketwons.

Alistract of outlurn of work executed by
Irigonometrien Parties
Summary of rusules of vork of Topogra-
phical P'artios

GENERAL REPORT

(1)perations of the Surbey of Endia,

FOR SEASON

1879-80.

INTRODUCTORY.

The general direction of the Department and the immediate supervision of the Trigonometrical and Topographical Branches, have been performed by MajorGeneral J. T. Walker, C.B., R.E., Surveyor General. The immediate supervision of the Revenue Branch has been performed by Lieutenant-Colonel J. Sconce, S.C., Deputy Survejor General.
2. The principal operations which have been carried out during the survey year under review, viz., from 1st October 1879 to 30th September 1880, are as follows :-

Statement of Survey Operations and Parties.

Number in this liopost.	Nature and Localc of Operation.	Name of Executive Olicer.	Desiguation of Survey Party.	Remarts.
	Triangulation.			
II	Madras	Lient.-Col, B, R, Branfill	Madras Party.	
III	Enstern Sind :	Capt. M. W. Rnaers, R E. Capt. J. Hill, R.E.	Bombay Party. Eastara Froutior Party	$\} \begin{aligned} & \text { Principal Triangula- } \\ & \text { tion. }\end{aligned}$
IV	Burnag Frontior	Mr. W. G. Boverloy.	Eastorn Frontier Party Burma Party.	Secondary ,
v	Central India	Major E. H. Stoel, S.C.	No. 1 Topographical	
VI	Khandesh .	Capt. W. J. Henviside, R.E.	No. 2 Litopograplical	$)$
VII	Malwe . . .		Survey.	
			Surrey.	Topogrnphy on 1-inct
VIII	Sylhet	Major W. F. Bndgley -	No. 6 Topographical Surroy.	(tion on same scale.
IX	Rajputana. .	Lieut.-Col. G. C. Deprec, S.C.	No. 7 Topographical	
\mathbf{X}	Mysore . .	Capt. G. Stralian, R.E.	Survey. No. 8 Topographical	
XI	Gnzorat	Lient.-Col. C. T. Hnig, R.E.	Guzerat Sarvey.	2-inch scale for ropro
XII	Meerut Du., N.-V. ${ }^{\text {P }}$.	Mnjor W. H. Wiking, S.C.	Guzerat Snrvey, 3rd Revenue Survey.	$\left\{\begin{array}{l} \text { duction on same soale } \\ \text { and reduction to } \end{array}\right.$
XIII	Kattywar and Catch .	Major A. Pulan, S.C.	Kattywar and Cutch	imoh acale.
XIV	North Deccan and Konkan	Col. J. Mnedonnld, S.C.	Survey. 10th Revenoe Sarveg	2-inch scale, for reduc
XV	South Deccan . .	Major H. S. Hutchinson, S.C. .	$\begin{aligned} & \text { 10th Revenne Survey. } \\ & \text { 11th do. do. } \end{aligned}$	tion to 1 -inch scale.
	Wauzavar or Villaye Survey.			
EVI	Ramalpindi and Dera Ismai Khan.	Licut.-Col. D. Macdonald	1st Revende Survey.	
XVII	KLordn Eatate, Bengal	Mr. J. Camplell	7th do. do.	$\}^{4-i n o h ~ v e a l e . ~}$
XVIII	Bandn and Mirzapore, N. W.P.	Col, F. C. Anderson, S.C.	5th Revenna Surveg.	16-inch acale, and Forest Survey on t-inch senle.
$\underset{\text { XIX }}{ }$	Jannpar, N.-W. P.	Mr. E. T. S. Johnson	6th do. do.	
$\mathrm{XXI}^{\text {XX }}$		Mnjor W. Barron, S.C. Copt. J. E. Snndeman, S.C.		¢ 16 -inch ecalo.
XXII	Bassein, Durma.	Major D. C. Androw, S.C.	$\begin{array}{lll} \text { 2nd } & \text { do. } & \text { do. } \\ \text { 8th } & \text { do. } & \text { do. } \end{array}$	

Statement of Survey Operations and Parties,-concluded.

3. The principal triangulation of all India, as originally designed by Colonel Everest-about the year 1832-with the approval of the Court of Directors of the Honourable East India Company, was intended to consist of a system of meridional chains of triangles at intervals of about 1° apart, tied together by longitudinal chains at about 6° apart, the whole being enclosed within a periphery formed by chains of triangles carried along the frontier and coast lines. The operations have been carried on in general accordance with this design. But the distance between the principal meridional chains which bave been exccuted within the last 20 years has been materially increased; for it was found that chains at intervals of 2° to 3° apart would suffice as a basis for the general topography of the country. For similar reasons a chain of principal triangles on the west coast of the Peninsula, from Cape Comorin to Mangalore, which is now all that is wanted to complete the periphery of frontier and constline triangulation, may be dispensed with; it would extend from the southern extremity of the well-known Great Arc of Colonels Lambton and Everestas recently revised and modernised-and close on the Mangalove longitudinal series, and thus it would nowhere be as much as 100 miles, nor more on an arerage than 50 miles, distant from the principal triangulations which have already been completed; morcover, it would cover a bill tract through the whole of which good secondary triangulations have already been carried-being in this respect unlike the twin series on the east coast which passes over forest-clad plains, very difficult to triangulate and never before operated in. Moreover, its completion is not necessary for geodetic purposes, as for them the present first class chains of triangles in its neighbourbood will amply suffice. It is solely desirable from considerations of regard for the general symmetry of the principal triangulation; but as it would employ a survey party for fully threc or four years, its cost would altogether outweigh those considerations. Consequently, as the chain of triangles along the east coast, between Cape Comorin and Madras, which has been some years in progress, was completed during the present year; the principal triangulation may now be considered to be wholly finished in Southern India. In Northern Indin, only a small portion of a single (meridional) chain of triangles remains for execution, which will probably be completed within the next few months, and then the whole of the principal triangulation of the regions between Afghanistan and Burma, the Himalayan Mountains and the Indian Ocean, will be finished as regards the linear and angular measurements and the field operations geuerally; the reduction of the observations is well advanced, but about one-half still remains for completion.
4. The general outturn of the triangulation was as follows: Threc chains of principal triangles of an aggregate length of 165 miles, furnishing 26 new stations-at three of which verificatory astronomical determinations of azimuth have been made-and embracing an area of $\mathbf{3 , 0 4 9}$ square miles; also various
chnins of secondary triangles of an aggregate length of 150 miles, furnishing 33 new stations and 172 points, in an area of about 5,000 square miles, exclusive of a large amount of secondary triangulation in Siam and Sikkim, of which complete details have not yet been received.
5. The regular topographical operations-mostly on the standard scale of one inch to the mile and on the half-inch and two-inch scales-were carried on in continuation of the operations of the preceding year, in the same provinces and by the same parties. The gencral outturn of the topography was as follows:-

220	square miles surveyed on the	$\frac{1}{4}$-inch seale.		
7,135	ditto	dito	$\frac{1}{2}$,$"$
4,794	ditto	ditto	1	$"$
9,664	ditto	dicto	2	$"$,
117	ditto	ditto	4	,$"$

Two towns of an aggregate area of 20 square miles were surveyed, one on the 6 -inelh, the other on the 12 -inch scale.
6. The Mauzawar or Village survey of the Murree and Kahuta Tahsils of the Rawalpindi District for the Forest Department has been completed; and the survey of another tract, the "Kala Chitta" range, also in the Rawalpindi District, for the same department, has been commenced. The village surves operations in the Dera Ismail Khan District have been continued. The forest survey, on the 4 -inch scale, in the Banda District, has been completed. The Khorda Estate Survey larty-reduced in strength after completion of its cadastral survey operations-has surveyed a hilly portion of the estate on the 4 -inch scale, where a cadastral survey was not required; and at the same time has completed the survey of the village boundaries in the area left for the measurement of fields by the settlement survey. This party has also surveyed, on the 32 -inch scale, several detached hills within the settlement survey area.

No. 3 Revenue Party, which has been engaged chicfly on topographical survey, has also carried on a village survey of the alluvial lands in the bed of the Jumna Riser.

The total areas of these several operations are-
2,118 square miles surveyed in detail on the scale of 4 inches $=1$ mile, but including 40 square miles of 32 -inch survey in Khorda. 1,973 square miles of preliminary traversing.
7. A small area rejected from the forest reserves has been surreyed cadastrally in Banda, and the survey of the district has been completed. The cadastral surveys of Districts Jaunpur, Ghazipur and Mirzapur have been continued, as during the previous season, on the 16 -inch scale. The cadastral survey of District Hantharraddy in Burma has been continued on the 16 -inch scale, but having the field as the unit of survey in place of the holding. A new party has been raised for the cadastral survey of the Bassein District, for which the 16 -inch scale and the unit of the field have been adopted, as for Hanthawaddy.

The total areas surveyed by the Cadastral parties are-

$$
2,692 \text { square miles surveyed in detail on the scale of } 16 \text { inches }=1 \text { mile. }
$$

1,581 qquare miles of preliminary traversing.
8. In Northern Afghanistan the advance of the British forces to Kabul and the occupation of the country up to August 1880 offered fresh opportunities for the extension of our geographical knowledge, which during the previons year had been limited to the western extremity of the Kuram and Jellalabad Valleys. In continuation of this work the survey has been extended westwards up to the Pughman range, and now embraces the Koh-i-daman, Logar, Itissarak, Warlak, Maidan and Lughman Valleys; several points have been trigonometrically fixed on the Hindu-Kush which will be of much assistance towards the rectification of existing maps.
9. In Southern Afghanistan the operations were somewhat restricted ; but a rough recomuaissance was made of a portion of the country between the Khakrea Valley and Girishk, and the survers of the country around Kandahar were added to and improved as far as possible. A very useful and important route through the Khushk-i-Rud and northern portion of the Tarnak Valleys on northwards through the Ghazni Valley over the Shere-i-darra Pass, and into Wardak, was completed; and as this establishes a connection between the
surveys in Northern and Southern Afghanistan, and furnishes the positions of several important places, it will afford material aid in rectifying the old maps of the country between Kandalar and Kabul.
10. In Beluchistan a rough reconuaissance was effected of the country situated within the triangle formed by Quetta, Thal-Chotiali and Sibi; it is more or less incomplete, as the country was in an unsettled state, and the surveyors could only pass along the routes traversed by troops; but around Sili, Dadar and a portion of the Lower Bolan, a fair amount of good topography has been obtained.
11. The combined operations in Northern and Southern Afghanistan and in Beluchistan furnish a total area of about 10,000 square miles of new geo. graphy, of which about two-thirds appertain to Northeru Afghanistan.

PART I

THE OPERATIONS OF TIIE SEVERAL SURVEY PARTIES APPERTAINING TO THE THREE BRANCHES OF THE DEPARTMENT.

TRIANGULATION.
 I.-TIE MADRAS COAS'r SERIES.

12. The primary olject of this chain of triangles was the completion of

Pe;ronnel
Lieutenant-Colonel B. R. Brandill, Deputy Superintendent 2nd grade.
Nr. C. D. Potter, Assistnut Surveyor Ist grade.
" A. H. Bryson, " " 3rd " adjacent islands of Palks' Straits for the connection of the Ceylon Survey with that of India. Triangulation had been commenced in the southern portions of the Peninsula, by Colonel Lambton, at the begimning of the present century, and it had been carried down the coast from Madras to Negapatam; but it simply consisted of a narrow chain, following the coast line and avoiding the interior, which is flat and covered with trees, and was found to be altogether too difficult to be touched during those carly days of the trigonometrical survey, when as yet no method of taking the operations through tracts of forest had been devised; thus, a great blank in the triangulation has waited for the better part of a century to be filled in, and this work, which was commenced a few years ago near Cape Comorin, has now been completed.
13. The principal operations of the present year consisted in the measurement of the angles of three polygonal figures, covering the space between the terminal side of the triangles of last year, which is situated a little to the north of the parallel of Pondicherry, and a side of the triangles near Madras which are situated at the eastern extremity of the Madras longitudinal series. Obserrations were taken at 15 principal stations, of which 11 were newly fixed; the direct distance spanned was 68 miles; 82 secondary stations and points were fixed; and an area of 2,001 square miles was covered by the principal and secondary triangulation. Astronomical observations were taken at two of the principal stations, partly for the verification of the azinuth, and partly in order to throw light on the probable amount of the local attraction in the direction of the prime vertical on the coast line; for this is a matter of much interest in connection with the question of the relations between the density of the strata of the earth's crust under continents and the density under the bed of the ocean.
1.4. Sccondary chains of triangles were carricd from the main chain to fix the positions of the light-houses at Pondicherry and Negapatam, and various other points which were too far away from the principal stations to be observed from them. These secondary chains passed over a thickly-wooded country, and could not have been executed at a moderate cost had it not been that there were lofty temples-commonly called Gopurams-in some of the intermediate villages, from the summits of which mutual observations could be taken; thus, the delay and expense of cutting lines to open out the rays between the stations, were avoided. To reach the summits of the temples was, however, in all cases a more or less difficult matter, as there were no staireases leading
up to them; ladders had-invariably to be lashed outside,-in one case to a height of 103 feet-the climbing over which was very perious; and as the roofs were always so ricketty that the movement of an observer round his theodolite would cause much vibration and deteriorate the observations, a platform resting on the walls had to be crected for the observer in each instance.*
15. The principal triangulation was finished unusually early in the field season, as the country was generally very favourable for the operations. After its conclusion Colonel Branfill proceeded to the west coast to connect the secondary triangulation which Colonel Lambton had brought up from Cape Comorin, over the hills of Travancore and Cochin to Ponini, early in the present contury, with the secondary triangulation-known as the Malabar Minor Series-which mas brought down from the Mangalore Longitudinal Serics in the year 1873-74. The connection was satisfactorily accomplished, rendering any further triangulation in this quarter unnecessary, for the reasons which have beeu already stated at paragraph 3 of this Report.
16. Colonel Branfill's operations of the present year closed with sundry obscrvations for effecting a better connection of the triangulation on which the topography of the Nilgiri Hills is based, with his principal triangulation. This has completed the modern operations in Southern India, the greater portion of which have fallen to his share, and have been accomplished with much skill, energy and perseverance. His future work will be to complete what remains to be performed of the principal triangulation in Northern India, and to supervise the measurement of a base line in Tenasserim at the southern extremity of the Eastern Frontier Series of principal triangles.

II.-THE EASTERN SIND SERIES.

17. Having completed the operations on which he had been engaged in

Captnin M. W. Rogers, R.E., Officinting Deruty Superintendent 3 rd grade. Mr. W. C. Price, surveyor 4th grade. - C. P. Torrens, Assistant Survejor end grade. Southern Afghanistan in conncetion with the recent military movements, and which included the execution of a chain of triangles between Quetta and Kandahar, Captain Rogers returned to Sind to resume the principal and secondary triangulations which had been suspended in 1878, when war with Afghanistan was declared. While returning he was much delayed for want of transport, all available animals heing required for the army ; and when he arrived at Hyderabad, where his principal instruments had been left in store, he was further delayed, because none of those useful men called 'hammals' or 'bearers' were to be obtained for the carriage of his large theodolite, all persons of this calling having either joined the army, or deserted the country through fear of being required to do so. Thus, it was necessary to wait until bearers could be brought up from Poona before the operations could be commenced.
18. The amount of work remaining to be completed on the principal serics of triangles was what it might have been just possible to accomplish in a long field season and under a very favourable combination of circumstances, by a surrey party fresh and in full rigour after some months' residence in recess quarters. Únder existing circumstances Captain Rogers and his party, who had just returned from field operations extending over a year in Afghanistan, could not be expected to accomplish more than half of what remained to be done; but as this wonld sccure the completion of the whole by the end of the following year, the duty mas a very appropriate one for him to take up on his return from Afghanistan. IIe took final observations at 14 principal stations, forming two double (or two-contered) polygons; the area covered by the principal triangulation was 1,278 square miles, and the direct distance spanned was 61 miles. An azimuth of verification was also determined by star obser. vations. The chain of scoondary triangles convecting Khelat with Quettia was completed, and is serving as a very valuable basis for such topographical operations as are being carricd on from time to time in this region.
19. Captain Rogers went to Europe in April, making over charge of his party to Mr. Hennesscy, who has supervised the reduction of the observations and the preparation of the eharts of triangulation, in addition to his regutar

[^0]duties in connection with the Computing Office at the Head-Quarters in Dehra. dun. This work has been taken up in the order which was most desirable to furnish final data for the survey operations in Southern Afghanistan and Beluchistan; viz., 1st, the series from Jacobabad to Quetta ; 2nd, the series from Quetta to Khelat; Brd, the series from Quetta to Kandahar ; 4th, the triangula. tions around Kandahar and in the Khakrez Valley. The three first have been finally disposed of, but the fourth will probalbly be largely supplemented by observations taken subsequently by Major Leach, V.C., R.E., and by Lieutenants Talbot and Longe, R.E.*

III.-EASTERN FRONTIER SERIES.

20. The party employed in the Eastern Frontier had been chiefly engaged

Personnel.
Captain J. Hill, R.E., Othicinting Deputy Superintendent 31d grade.
Mr. H. Beverley, Surveyor 1st grade.
, J, Low, Surveyor 2nd Erade.
" J. F. MeCartly, Assistant Surveyor 3rd grade. during the previous year on the chain of secondary triangles which was intended to connect Bangkok, the capital of Siam, with the Indian triangulation. The programme of the operations for the present field season was for Captain Hill to complete the triangulation in Siam, while Mr. Beverley extended the chain of principal triangles which is known as the Eastern Frontier Series, down into Lower 'Tenasserim, and selected a suitable site for the measurement of a base line there at the southern extremity of the British territories in the Malayan Peninsula.
21. The ill-health, both of Captain Hill and Mr. İ. Beverley, on whose presence the successful prosecution of the operations mainly depended, has materially interfered with the progress of the operations. Captain Hill was obliged to go to England in the summer of 1879, and this prevented him from reaching Bangkok in time to commence the field operations before the end of January, when the most favourable time of the year for observing distant objects was nearly over. The triangulation had been carried eastwards in the preceding year to the edge of the alluvial plains in which Bangkok is situated, and which are so thickly covered with trees that it seemed almost impossible to extend it over them without much line cutting, which, for obvious reasons, would have been very undesirable, both from a political point of view, and because verr costly. Fortunately, a careful reconnaissance of the ground enabled Captain Hill to discover certain lofty temples and the climney of a deserted sugar factory, the summits of which were mutually visible over the tops of the trees, though only in very clear weather, as the distances were considerable. No observations could be taken until the rains began to fall, and then they were speedily completed. A large number of observations have been taken from the stations of the tringrulation, fixing scveral hill peaks on both sides of the Gulf of Siam, all the chief pagorlas and flagstaffs in Bangkok, and various objects in the towns of Pcehboorec, Tachin and Paknam. Captain Hill cordially acknowledges the raluable assistance he received from the Siamese Government, and from Mr. Palgrave, the British Consul at Bangkok, and his assistants, Messis Newman and Gould.
22. Mr. Heury Beverley commenced his field operations in November. But after a few weeks spent on the measurement of the principal angles, his health broke down, and he had to proceed to Mergui for medical advice. Ho had taken nbservations at fire principal stations, and tried hard to get to the sixth station in orler to take the few observations which were remaining to complete two quarlrilateral figures; but his streugth failed him, and, greatly to his sorrow, ho liad to give up work with his last figure still incomplete. He had been stricken with a serions illness, which from the first was pronounced by the doctors to be fatal, and, through having a naturally very strong constitution, he rallied occasionally and lived on until the 22 nd J une, when his working days werc over and he was mever again able to puthand to an instrument. He entered the Great Trigonometrical surver in the year 1855, had served 25 years, and was one of the most hard-working and valuable men in the Department; for his heart was

[^1]
always in his work, at which he laboured with unflinching assiduity and perseverance, and almost invariably with much success, though his operations were often carried on in malarious tracts, under great disadvantages, and with much detriment to his health. His loss is much to be regretted.*

IV.-THE SECONDARY TRIANGULATION IN BURMA.

23. The triangulation which was being carried from Rangoon to the tro beacons that were constructed on the main

Personnel.
Mr. W. G. Beverley, Oficinting Assistant Superintendent 2ud grade.
, J. O. Hughes, Assistant Surveyor 2nd Grade. land opposite the Krishna Shoal, after the disappearance of the Krisha Lighthouse, had progressed very slowly in the preceding year. Mr. Hughes, the Surveyor who was employed on it, expressed his inability to complete it in another season, owing to the difficulties to be encountered; the country was quite uninhaljited, and was covered with dense forest and jungle through which lines had to be cut in all cases to open out the rays between the trigonometrical stations. The triangulation was therefore abandoned, and a traverse was carried up to the beacons along any footpaths and openings which presented themselves in the forest. This being a much easier matter to perform, was accomplished in a few weeks; and though it is not as accurate as a triangulation, it may be considered sufficiently accurate for the purpose in view. The traverse was so executed as to form part of one of the main circuits on which the cadastral and revenue surveys now being made in the Hanthawaddy District of Rangoon, by the survey party under Captain Sandeman, will be based; for this purpose it was executed conjointly by Mr. Hughes, and an Assistant Surveyor, Mr. G. E. Parker, of Captain Sandeman's party, both going over the same line indepenclently and comparing results, station by station.
24. Mr. W. G. Beverley was employed throughout the field season on the secondary triangulation around and to the north of Bassein; the outturn of work was small and the triangulation was left incomplete, because, under the supposition that it was finished, Mr. Beverley had been directed to proceed to Mergui to take charge and supervise the field operations of the Eastern Frontier Party, which had lost its executive officer through illness. This he did not succeed in doing, merely joining the party after it had returned to recess quarters; thus, he would have been better occupied had he remained to complete his work in Basscin.

TOPOGRAPHY.

V.-GWALIOR AND CENTRAL INDIA SURVEY (No. I TOPOGRAPHICAL PARTY).

25. The operations of this party were almost entirely confined to the area between the parallels of $24^{\circ} 0^{\prime}$ and $24^{\circ} 30^{\prime \prime}$

Personnel.

Mujor E. IH. Steel, S.C., Olliciating Assistant Superintendent lat quade, in chinre.

,. P. J. W. Deran,	"	"		,
C. T. Templetom,	,	"	2 nd	"
A. Kitchen	"	"	3 rd	,
O. l'. Thte	"	"	4th	"

Ahdul Guffur (trausforred to Kandalatr in A_{1} ril)
and 4 others. north latitude, and between the meridians 73° and 74° cast longitude, the exception beine a small tract in the vicinity of the Luni River, east of Siuchi. The results of the seasou's work are represented by $1,257 \cdot 4$ square miles of detail sur. vey on the seale of 1 inch $=1 \mathrm{mile}$, and by 270 square miles of triangulation, the latter heing required to cover a gap in the triangulation of previous years in the ricinity of the small cantomment of Kotra.
26. 'This outturn of area is execptionally small; butas the greater portion of the work lay in exceedingly intricate ground, the lower features of which have been described by Major Stecl, as resembling a petrified stormy sea, a

[^2]larger outturn could not well have been expected. The work has been very carefully executed and examined in the field by Major Steel.
27. The fair mapping of standard sheets Nos. 88, 90 , and 94 has been completed, and the maps are now in course of publication.
23. Captain C. Strahan, R.E., having returned from furlough, was posted to this party in time to commence the field operations of the current working season. The party will be engaged on the detail survey of slicets Nos. 86 and 89 , on the scale of $1 \mathrm{inch}=1$ mile, and on a survey of the cantonment of Kotra on the scale of 8 inches $=1$ mile. The work on the smaller scale will again fall in very intricate ground.*
VI.-Khandesh and bombay native states strvey (No. 2 TOPOGR. PHICAL PARTY).
29. This party has been engaged in topographical work solely on the scale

Personnel.

Captain W. J. Meaviside, R.E., Deputy Superintendent in charge.
Mr. A. G. Wyntt, Surveyor, 4th grale.
" J. A. Barker, Assistnut Survejor, 1 st grade.
" F. E. Warle " " 2nd "
". G. Vander Heck ", " \quad 3rd "
$\begin{array}{llll}\text { ". E. Grahum } & \text { ", } & \text { ", } & \text { 3rd } \\ \text { ". } \\ \text { C. Grorge } & \text { ", }\end{array}$ C. Grorge " " 4th " of 2 inches to the mile in the Khandesh District; the mapping on the 1 -inch scale of the country north of Khandesh, including the Satpura Range and the Nerbudda Valley, having been completed last jear. With a view to assist the settlement officers, the positions of the trijunction pillars of all the villages are fixed, generally by trarersing; and are shorn on the fair maps together with the village boundaries.
30. The triangulation this vear was carried on by Mr. Wyatt in the southern portion of the District in the Talukas of Erandole, Páchora, Jámner and Nasirábád, and covered an area of 1,251 square miles, most of which is under cultivation.
31. Traversing was extended over the area triangulated last year in the south-east portion of Khandesh, including the Talukas of Bhusawal and Jámner, and also in the Pimpalner and Nandurbár Talukas, west and north-west of Dhulia. Altogether 1,151 linear miles of traversing were executed, by which 753 trijunction pillars were fixed ; affording the means of determining the heights of 184 traverse stations by the simple and comparatively accurate method of olserving from traverse stations to trigonometrical stations, the heights of which were known, the distances between the trigonometrical and the traverse stations being worked out from the difference of the horizontal co-ordinates.
32. The detail survey was carried on in the Pimpaluer and Nandurbár Talukas, lying west and north-west of Dhulia. Sheet 38 was completed with an overlap to the south and west, of 1 mile; portions of sheets 37 and 34 were likewise surveyed. The total area of detail survey executed is 827.4 miles.
33. The country in shcet 38 embraces the upper basin of the Pánjhra Valley; the uplands are about 2,000 fect above sea-level with scattered groups of Bheel huts and but few villages. In the northern portion of the sheet a good deal of the country is rery hilly and lout sparsely inhabited: to the south a narrow rugged range, a spur of the Sáhyádri hills scparates Khandesh from Násik with peaks of columnar basalt standing up 2,000 feet above the Pánjhra Valley; on the west the Síhyidri hills covered with tree forest run northwards sloping away westwards to the Dangs. In sleet 37 the country is more lerel and more open. In slicet $3 t$ the north-east portion of the country near the banks of the Tapti River is a flat open plain of black snil, on which a great deal of wheat is grown : further west the country is covered with low dhatk jungle, which, however, is being gradually cleared off, and in some places with heary tree forest. The southern portion of this sheet is in strange contrast to the north-cast portion, the prevailing characteristics being low hills covered with grass and tree forest with but little cultivation.
34. The survey is carrich on under great disadrantages in shects 34 and 36, as that part of the country is demel very unlealthy until the month of Febuary, and by that time water has become scarce: the heat is very great in

[^3]
No. 2 PARTY.

index to the sheets of the khandesh \& bombay native states survey,
On the Scales of 1 Inch $=1$ Miie and 2 Inches $=1$ Mile.

Published under the direction of Major General J. T. Walker, C.B., R.E., F.R.S., Surveyor General of India,

INDEX to The SHEETS of The BHOPAL \& MALWA TOPOGRAPHICAL SURVEY,
On the Scale of 1 Inch $=1$ Mile.

Published uader the airection of Major General J. T. Wriker, O.B., R.E., F.R.S., Surveyor General of India
index to the sheets of the garo, khasi, and naga hills topographical survey,
On the Scales of 1 Inch $=1$ Mile, $\frac{1}{2}$ Inch $=1$ Mile, and $\frac{1}{4}$ Inch $=1$ Mile.

[^4]such low-lying ground as the hot weather advances, the low hills and forest shutting out all breeze.
35. Standard sheet 38 has been mapped during the recess, and is now in course of publication.
36. The following is now the state of progress of this survey :-

Area surveyed up to dite, 13,663 square miles.
Area remaining for detail survey, 4,017 square miles.
37. During the current field season the triangulation will be carried over the south-western portion of the Khandesh District, extending over an area of a little more than 1,200 square miles, and the detail survey on the scale of 2 inches $=1$ mile will be continued in the enstern part of the Khandesh District, in portions of standard sheets 6, 7, 20 and 22, and in portions of sheets 31,36 and 37 on the north-western part of the District.
VII.-BHOPAL AND MALWA SURVEY (No. 5 TOPOGRAPHICAL PARTY).
38. As stated in paragraph 48 of last year's report, this party was to have

Persomel.

Mnjor J. R. Wilmer, S.C., Officiating Δ ssistant Superin lendent 1st grade, in charge.
Mr: D. Athinson, Surveyor 2nd grade.
" C. F. Hamer
"E. A. Wainwright, Assistant Surveyor, lst Ernde.

$\begin{array}{lllll}\text { "H. H. Lilley } & ", & " & \text { 2nd } & " \\ " \text { G. R. Copping } & ", & " & \text { 3rd } & "\end{array}$
Sub-Surveyor Prem Raj
und threc otharla sing
and three others. been employed on the triangulation of the ground falling between Latitude $23^{\circ}-24^{\circ}$ and Longitude $74^{\circ}-75^{\circ}$, and on the detail survey on the scale of 1 inch $=1$ mile of the tract shewn on the iadex maps by standdard sheets $55, .56$ and 57 , and on the survey on the scale of 6 inches $=1$ mile of the City of Dhar. The party was late in taking the field, and it was found that the difficulties of the ground to be surveged in detail were too great to admit of the programme being carried out in the manner anticipated; the area designed for triangulation was consequently very considerably reduced, in order that more time might be made available for the detail survey; notwithstanding this, the area surveyed in detail fell short of the expectations entertained at the commencement of the field season.
39. The triangulation was extended over an area of 1,019 square miles by Major Wilmer, and the detail survey of sheets 50 and 57 and portions of sheets 42 and 55 , in all embracing an area of 1,408 square miles, consisting almost entirely of intricate hilly country corered with jungle, was completed on the scalc of 1 inch $=1$ mile. The city and environs of "Dhar" covering an area of $8.3 t$ square miles, were surveyed on the scale of 6 inches to the mile, and the plan is now in course of pulbication. The results of the 1-inch work.will almit of sheets 42,56 , and 57 being published.
40. The state of the work of this party up to date is as follows, viz.: -

> Area actually surveyed, 22,542 square miles,
> ", remaining for survey, alout 5,700 sqaure miles,
of which about 2,800 square miles have been prepared by triangulation in advance for future detail survey.
4. During the current field scason, the triangulation being well in advance of the detail survey, will only be extended over small portions of the tracts falling in shcets 49 and 51 . The detail survey on the 1 -inch scale will be continued over the remaining portion of shect 55 , and over shects 38 and 40; and surveys on the seale of 6 incles $=1$ mile will be made of the Cities of $\mathrm{U}_{\mathrm{jjain}}$, Rutlam, and Jhabua.

VIII.-KIIASI AND GARO HILLS SURVEY (No. 6 TOPOGRAPHICAL PARTY).

42. This party was delayed somewhat in taking the field, by the difficulty

Personnel.

Mnjor W. F. Indgley. Oficiating Deputy Superintendent, 3rd grmele, in charge.
Mr. A. W. Clement, Survegor tht prade.
"J. McCuy. Assistant Surveyor, Ird grade.
" A. W. Simart, " " Sril ,"
\because D. Complell, $\because \quad \because \quad$ 4th
Süb-Surveyors, Muns'si shäh Nasirudin," nal four others. of collecting coolies among the Khasias, on whom the party entirely depends for carriage. So many of them had been taken for service with the troops on the experdition to the Naga Hills, that Major Badgley had to search far and wide betore he could collect a sufficient number for his requirements. The party was obliged
to leave the field earlier than usual, on account of the heavy rains and floods which occurred at the latter end of March. Whese circumstances tended to reduce the outturn of work below the usual quantity.
43. The oljects of the year's work were,-the continuation of the survey of waste lands, which have been, or may be, taken up for tea cultivation, and of the forest reserve lands in the south-east corner of the Sylhet District,-and the survey of a portion of Hill Tipperah to the east of Agartollah.
4.4. 'The triangulation of these tracts having been almost completed in previous seasons, scarcely anything more than the detail survey remained to be done; 102 square miles of waste land were surveyed on the scale of 2 inches to the mile; 210 square miles of forest rescrve were surveyed on the scale of $\frac{1}{2}$ inch to the mile; and 220 square miles were surveyed on the seale of $\frac{1}{4}$ inch to the mile in Hill Tipperah. The whole of the work was in country of a very difficult character, covered in some parts with dense forest and thick undergrowth, and in others consisting of swamps covered by high reeds. Λ great portion of the work had to be done from a succession of platforms in trees, sometimes nearly 100 feet above the ground, and by chaiu measurements along the beds of streams. The season was unhealthy, cholcra broke out in several parts of the tracts under survey, and Major Badgley reports the death of 12 of his menials from that and other diseases.
45. During the current field seasou Major Badgley will be engaged on

- Snid by mistnke in last jenres report tobe required the survey on the scale of $\frac{1}{2}$ inch to on the finch senle. the mile of a portion* of Hill 'Tipperah between the Lungai Valley on the east, and "Koilashar and Hudgajeeah" on the west, an area of about 230 square miles, and will continue the survey on the scale of 2 inches to the mile of the six portions referred to in paragraplh 56 of last year's report.

IX.-THE RAJPUTANA SURVEY (No. 7 TOPOGRAPHICAL PARTY).

46. This party assembled at Delhi on the 10th Octoler, and in accordance

Persomel.

Lieutenant Colonel G. C. Depree, S.C., Deputy Suparintendent lst grade, in charge.
Mr. G. A. Mefiill, Surveyor 2nd grade.
" E. S. I' Alkinson, Surveyor th grade.
", J. H. Wilson, Assistant Surveyor 2nul grade.
" W. C. G. Burkleg, Assistant Sinreyor 3rd grade. \because IR W. Senior, Aesistant Surveyor $\dot{4}$ lh wrade. Sub-surverors, Buboo Modbusudin Dutt, Munshi Esuf Sharif,
nnd six others with the programme laid down in paragraph 61 of last ycar's report, procceded to extend the triangulation over the northern portions of the tracts falling in degree sheets $x y$ and $x v a$, cmbracing an area of 690 square miles. The area previously prepared for detail survey was so large that no farther triangulation for the work on the $\frac{1}{2}$.inch scale was necessary; the only other tringgulation required was that in conncetion with the survey of the city of Bickaneer.
47. The detail survey on the scale of 1 inch $=2$ miles was extended over an area of 0,928 square miles in degree shects marked xiri, xiv and $x v$ on the index map. The country thus surveyed is deseribed by Colonel Depree as almost entirely an uninteresting desert, the only variety being found in the salt works at Sar, and in the sandstone quarries of Khari. In the former, a coarse salt is produced by solar evaporation, and in the latter a stone of good colour and of compact texture, of which the stratum is horizontal and close to the surface.
48. The city of Bickancer was also surveyed and mapped on the scale of 12 inches $=1$ mile. The results of the scason's work will admit of the publication of four maps on the seale of $\frac{1}{2}$ inch to the mile, viz., the northern half of degree sheet xiri, the northern and southern halves of degree sheet xiv, and the southern half of degree sheet xv .
49. During the current scason, part of this party will be employed in Rajputana and the remainder in completing the survers of the cantonments of Dagshai and Solon, as already sanctioned ly the Goveriment of India.
50. In Rajputana, a large aren, about $\mathrm{s}, 000$ square miles, having leen prepared for detail survey, a comparatively small amount of work of this mature will be required, and in conseguence the triangulation will only be continued in the westerin portion of degree sheet $x x$, and perheps in the southern portion of degree shret xix. The detail survey on the seale of $\frac{1}{2}$ inch $=1$ mile will be carrica on in degree sheets $x v$ and xvi. The survey of the contonments

On the Scales of 1 Inch $=1$ Mile and $\frac{1}{2}$ Inch $=1$ Mile.

INDEX to the sheets of the MYSORE TOPOGRAPHICAL SURVEY,
On the Scale of 1 Inch $=1$ Mile.

of Solon and Dagshai will be continued on the scale of 24 inches $=1$ mile.*

X.-THE Mysore survey (No. 8 TOPOGRAPHICAL Party).

51. The area of triangulation in the province of Nysore previously pre-

Personnel.

Captoin G. Strahan, Deputy Superintendent, in charge.
Captuin J. R, McCullagh, R.E., Assistant Superintendent.
Mr. R. W, Chew, Surveyor 2 nd grade.
L. Pocock, ", 4.th "
, Δ. Jame's, Assistout Surveyor l"st grade.
", C. Tapzell, " " lst "
"F. Kitchen, " " 1st "
"W. Stoteshiry," ". lst "
" H. Todd, " " \quad 3st \quad,
"G. Glemming, " " \quad 4th \quad ",
"J. Kennedy, " $"$
Sub-Surveyor Rugavnyngar, Tinuenkatusami,
and three olhers. pared ly this party was so large as to render it unnecessary to make any farther extension of it during the season under review, the whole strength of the party was, therefore, employed on the topographical delincation of the MysoreKanara frontice with a view to liaving the maps of that rugged aud difficult country ready for the use of the Boundary Commission in the eusuing season.
52. The programme had been so arranged, that, no unforeseen circumstances intervening, the whole of this frontier would be surveyed in detail. Unfortunately, owing to sickness and the exceeding difficulty of surveying in such country as the Malnad of Mysore, this plan became impossible, and two small gaps aggregating about 25 miles in length have been unavoidably left in the frontier survey. It is hoped that arrangements may be made exrly in the season to supply the Boundary Commission with some sort of a map of these missing parts, so as not unduly to extend the time they will employ on this settlement work. The total outturn of detailed topographical survey during the season was as follows:-

53. A large part of this area was examined in the field according to departmental practice by competent officers and was found accurate. During the progress of this topography, many of the Ghat roads, whose courses are rery intricate, were surveyed independently by theodolite and chain; 251 linear miles, entailing $4,4,10$ theodolite stations, were thus measured.
54. The survey operations during the season under review were carricd on under great and numerous difficultics, the ruggedness of the Western Ghats combined with the tangled luxuriance of the forest, the absence of communications, difficultics of oltaining supplies and apathy of native officials, all conspired to retard progress, as well as the repeated attacks of fever to which many members of the party were exposed. \dagger
55. The orlinary methods of working with the plane-table were in many places utterly impracticable, and resort was had to special methods, particularly that known in the department as plane-table traversing, in which the planetable supplies the place of an angular instrument, and the measurements are made by chain. 'This is at all times slow; but where the chain lines have, as in this case, to be cleared through dense forest, the progress of the work becomes small indeed. All the mapping of the country surveyed during the field scason was incorporated in the fair shects drawn during the recess, and those which were complete, viz., shects $18,22,50$ and 63 , are now in course of pulbication; the remainder, viz., standard shects $20,21,25,26$ and 49 , have been retained in the office of the party at Mysore for completion during the ensuing season.

[^5]50. The present state of the work of this party is as follows:-

	S_{q} urie miles
A rea surveyed up to the end of last field season	9,316
Areal remaining for survey, alout	18.000
, triangulated in advance of detail survey	16,900

XI.-THE GUZERAT TOPOGRAPHICAL SURVEY.

57. Three descriptions of work are being carried on by this survey,

Persoanel.

Lietemant-Colonel C.'T. Inag, R.E., Deputy Superintendent, officiating 1st grade. Mr. T. A. LcMesurier, Assistant Superintendent, Guzerat Revenue Survej.
„ A. D'Souzn, Surveyor 1st grade.
„ A. D. L. Cliristie, Surveyor th grade.
" C. H. MeA'Fee, " 4th "
" J. Bond, Assistant " lst "

- S. F. Norman,
" C. A. Norman,
", IR.F.Warwick " 4th
, " 4th
G̈пpal Vishau, Sub-Surveyör.
Lakshumau Gharparé, Sub-Surveyor.
Hhan Govinal,
und 18 Nintive Sub-Surveyors and Apprentices.
follows:-
1st.-The ordinary topographical surves executed on the 2 . inch scale, but pul. lished on the 1 -inch scale:

2nd.-The publication of a series of maps on the 2 -inch scale comprising

British territory in detail and foreign in skeleton : and
$3 r d$.-'The survey of the Dangs forests on the 4 -inch seale.
58. The ordinary topographical work was carried on over an area of 1,052 square miles, sub-divided between British and Foreign territory as under-

and situated in four "slicets" ($\frac{1}{2}$ a degree longitude by $\frac{1}{4}$ degree latitude), of which only two can be immediately pulbished (as the thitrd and fourth are not yet complete), and of these the British terxitory will be published in three maps on the 2 -inch scale.
59. An area of 110 square miles in the Dangs forests has been surreyed on the 4 -inch scale, admitting of the addition of four more maps to the series of that survey which join on to the south of the area preciously surveyed, completing a very compact block of this wild, hilly country.
60. The operations of the past season bring the total area topographically surveyed in Guzerat up to about 12,660 square miles, and leave about 18,340 square miles to be done hercafter. In the Dangs about 300 square miles have been completed, and about 550 square miles remain.
61. The outturn of topograply on the 2 -inch scale has been less by 151 square miles, and that on the 4 -inch scale ly about 35 square miles, than in the preceding year. This is owing partly to the party taking the field somewhat later than usual on account of the unusual amount of mapping on hand at the close of the recess as mentioncel in paragraph 70, page 14, of last year's report, partly to many casualties caused by sickness, but chiefly to the very intricate nature of the ground surveyed.
62. A large area has been triangulated in advance for future topography, that executed during the past season having been carried chiefly over the British territory in the southern portion of the province. An area of 750 square miles is now ready for final survey in the north of the province, and about 2,400 square miles in the southem portion, including about 650 square miles in the Dangs, and the traversing connecting the work of the Guzerat Revenue Survey with the triangulation has been carred over the whole of the British territory in Guzerat, with the execpion of a small area of about 60 square miles at the extreme south of the Surat Collectorate, and also with the exception of the Panch Mahals, which have been survered more recently by the Guzerat Rerenue Survey on a principle different from the rest of the province, which

INDEX CHART of the GUZERAT SURVEY.

[^6]
The mall numeralu thus (5). indiciat the theoto of ajojoining surregn

INDEX MAP OF DISTRICTS SAHARANPUR, MUZAFFARNAGAR \& MEERUT

Photozincographed at the Survyor Genavils Offtce, Catcutct

Aublished under the direction of Major-General J.T.Walker, C.B-R.E-F.R.S., Surveyor General of India.
Surverar Generals Orfice Calcutan, Novenber
will render the work of the Revenue Surveyors much more easy of incorporation with that of this department.
63. The area triangulated in advance for future topography was 844 square miles, in which 504 stations and points were fixed, 80 having their heights determined also; the aggregate length of the lines traversed was 795 miles as a basis for the topography, and 590 of check lincs on the topography after completion. Ten sections of the 2 -inch maps, and one of the 4 -inch maps have been sent in to the Head-Quarters office for publication, and eight more are nearly ready to be sent in. Reductions of sheets $6,7,28,29$ and 31 have been prepared for incorporation into the Indian Atlas.*

XII.-MUZAFFARNAGAR AND MEERUT SURVEY (No. 3 PARTY, REVENUE BRANCH).

64. This party, of the strength noted in the margin, and under the charge of Major W. H. Wilkins, resumed field

Personnel.

Mnjor W. H. Wilkins, Deputy Superintendent 3 rd grade, in churge.
Mr. E. C. Ilyull, Olliciating Assistant Superintendent 2nd grade.
J. Told, Surveyor 3rd grade.
" R. C. I). Viwiug, Assistuat Surveyor let grade.
"C.W. Wilson, " \quad, nid $"$
" C. W. F. Scyers, ", ", 2nd " and 34 Sub-Surpejors, \&c. operations in the Muzaffarnagar District on the 18th October.
65. The regular work of the party is the topographical survey, on the 2 -inch scale, of the districts in the North-Western Provinces lying between the Ganges and the Jumna, and this survey has been continued southwards from the work of the previous season as far as the parallel of Latitude N. $29^{\circ} 08^{\prime}$; but in addition to the 2-inch survey, the party has also extended the special 4-inch survey, described in paragraph 80 of last report, of the villages subject to fluvial action on both banks of the Jumna, and has advanced southwards, as far as the river forms the common boundary of District Karnal of the Punjab with District Mcerut of the North-Western Provinces. The areas of the two descriptions of survey are as follows:-

The survey of District Muzaffarnagar has been completed during the season. In addition to the area of which the topography has been surveged in the Mecrut District, the preliminary traverse work has also been done of 1,256 square miles in readiness for topographical survey during next season.
66. Regarding the nature of the 2 -inch topographical survey, Major Wilkins reports:-
" The survey lias been as minute as the seale would allore. All cart tracks and roads, masonry rells, topes of trees, temples and other prominent oljects, as well as village sites, are shown. Limits of jungle and grass lands, except unimportant patcies, have been surveyed. Great attention has been given to all drainage lines, and low ground has been carefully defiued.;

The village boundaries hare been introduced on the final 2 -inch maps, as in former scasons, by transfer from the settlement field maps, with the exception of the villages in the allurial lands of the Gauges, where some of the boundarics had to be obtained by actual survey, a reliahle connection with the settlement survey not being possible on account of the want of trijunction platforms in those lands; the field maps of the low-lying villages were also not so good as in the uplands.

[^7]67. The success of the system of transferring the village boundaries from the settlement field maps to the survey maps entirely depends on the accurate identification of the points adopted as trijunctions of village boundaries by the settlement survey. Most of these points in the Saharanpur and Muzaffarnagar Districts had originally been marked by low platforms, and in those Districts these marks were repaired, or newly constructed, prior to survey, so that in Saharanpur and Muzaffarnagar the identification of the trijunction points has been satisfactory. The repair of these platforms has given a permanent value to the traverses of the topographical surver; and should it ever be required to repeat the settlement survey, skeleton plots of the trijunctions could be furnished which would form the basis of a new set of settlement maps. It is to be regretted that the repair or construction of these platforms is not being carried out in the Meerut District; the Government of the North-Western Prov. inces have refused to sanction the necessary expenditure, on the grounds that the survey operations are regarded as being purely topograplical, the present necessity of restoring the platforms as boundary marks, or the prospective advantage of obtaining a skeleton basis for a settlement survey, not being recognised.
68. The 4-inch survey of the villages on the Jumna has been carried out as explained in paragraph 80 of last report, to obtain accurate maps of the boundaries of villages, regarding which there had hitherto been much uncertainty, as well as to obtain a true definition of the District boundaries on the river, which also forms a part of the boundary between the North-West Provinces and the Punjab. The survey has been extended as far as the southern limit of the Karnal District ; and the boundaries have been surveyed as pointed out by the people, without previous demarcation by the civil authorities. The disputed boundaries between Districts Ambala and Saharanpur, which had come to notice during the previous season, have been settled by representatives deputed by the respective Governments of the North-West and Punjab, with whom a surveyor was associated as a referee on the matter of old boundary lines, and to provide for the immediate survey of the adjusted boundaries. Regarding the adjustment of the disputed boundaries, Major Wilkins reports :-

[^8]Regarding the thakbust maps of the river villages, Major Wilkins further reports:-
"They are so distorted in shape that they cannot be depended on for laying down any boundary."

The disputes on the boundary between Karnal and the Districts of the North-Western Provinces are not so numerous as those which were found on the Ambala boundary; and it is hoped the Provincial Governments may consent to the deputation of Civil Officers to settle these disputes, the same as was done for those of Ambala litst year.
69. During the season's operations, four principal stations of the Great Trigonometrical Survey have been connected with the measured traverses, and their co-ordinate valucs have been used to correct the errors of the chaining, in which the average error was found to be 2 links per 100 chains, or about 1 foot per mile. Check lines aggregating $27 \pm$ miles in length have been measured through the topographical board plans by Major Wilkins and his assistants; and olservations for azimuth to check the angular work of the traverses have been taken at 69 stations.
70. The mapping is still somewhat in arrears, the shects having only been completed southwards to the parallel of $29^{\circ} 30^{\prime}$. The duawing of the Sewalik Hills in the Saharanpur District by transfer from the Forest Survey maps has howerer, been completed; and in all, 43 standard shects for reproduction on the 2 -inch scale, and 47 "exaggerated" copies for reduction to the 1 -inch scale are now ready.

GREAT TRIGONOMETRICAL SURVEY OF INDIA. INDEX CHART OF THE KATTYWAR TOPOGRAPHICAL SURVEY.

[^9]INDEX CHART OF THE CUTCH TOPOGRAPHICAL SURVEY.

71. The office of the party was iuspected at Mussonrie during October; the records were found to be in order, and the office duties were being carried on systematically.*

Xili.-THE SURVEY of Kattywar (Kathiawar) and cutch.

7‥ At the commencement of the field season the topograply of the

Personnel.

Major Δ. Pullan, S.C., Deputy Superintendent Brl grade.
Mr. N. C. Gwime, Surveyor 4th grade
W. A. Finhling, Assishant Sirvegor 2nd grade.
G. 'I. Hall, \quad " 3rd "
P. F. Prunty, \quad " 4 th "
J. Keating, Gollboli, Heal" Sub-Survegor, and 11 other Sub-Surveyors.
district of Okhamandal, which is situated at the western corner of the peninsula, semained for execution in Kattywar; this has now been completed, and with it the general survey of Kattywar. In a few places the boundary lines between the talooks appertaining to the several Native States have not been surveyed, and are still shown in the maps as "approximate," because they were disputed and had not been demarcated when the survey was being made. Major Pullan thinks that the survey of the province may now be considered finished, and that it is not worth while going to the expense of sending a traverse party to pick up the few scattered breaks which remain for survey to complete these boundaries; and if the Political authorities, to whom this question has been referred, are of the same opinion, nothing more will be done.
73. The area finally surveyed on the 2 -inch scale for reduction to the 1 -inch scale amounted to 2,133 square miles, of which 491 were in Kattywar and 1,639 in the sister province of Cutch; the average number of planc-table stations was 12.6 per square mile of topography. The triangulation in advance covered an area of 1,450 square miles, fixing 56 stations and 462 points and giving the heights of 119 points. Of traversing, $1,22 \pm$ linear miles were executed, and test lines of an aggregate length of 296 miles were carried over the topograply.
74. During the recess season fair maps of sheets $57,58,58 a, 59$, and $59 a$ of Kattywar, and 15 and 22 of Cutch, each in four large sections on the 2 -inch scale, were completed and sent to the Head-Quarters office for publication. The whole of the current computations were duly brought up. Twelve of the standard sheets were reduced from the 1 -inch to the $\frac{1}{4}$-inch scale for incorporation in the engraved Indian Atlas. Two of the general reports for square degrees, Nos. v and ri, have been completed and sent in, and a third, No. ix, was nearly ready. \dagger

XIV.-AHMEDNAGAR, POONA, AND COLABA SURVEY (No. 10 PARTY, REVENUE BRANCH).

75. This party, of the strength noted in the margin, took the field in two

Personnel.

Colonel J. Macdonnld, Deputy Superintendent 2nd grade, in charge.
Mr. G. H. Cooke, Assistaut. Superintendent, Off. cinting 2ud prade, on furlough for 1 gear from 22nd Mny 1480.
A. M. Lnwson, Surveyor, 9rd grade.
" J. Newland, Assistaut Surveyor, lat grade
"W. M. Kelly. " " 3vi grade, transfurred from No. ${ }_{5}$ Party, 11 th November 1879. R. R. Dichiuson, Assistant Survegor, 3rd grade.
H. Corkery, Asgigtant Surveyor, 4th grade procecded to Afglanistan on field servico, 18th Octuber 1879 nud 18 Sul-Surverors, \&c. sections and resumed field operations on 15th November. One section has been engaged in completing the survey of the portion of the Deccan which had been allotted to this party for survey, with which also has been included the survey of the Ashti Taluka of the Nizam's Dominions, as it is surrounded by Deccan country. The second section has commenced the topographical survey of the Konkan, where preliminary triangulation had been done last season. The 2 -inch continued in the survey of the Konkan,

[^10]Mr. E. C. Hyall hing done pery well in the fich.
Mesars. Told, Ewting nind Wilgou havo arivell unlform salisfnetion both in field and offles.
Mr. Scyers lias done well in ofiec, but nome of tis field work was indififerent.
The following Sulb-Surveyors and others of the Native Establishment are sulected for favourable mention : vis Nundlnll Chatlerjee, Liedar Nath, Mhugobutty Chuckurhutty, Surfuraz Khnm, Mahomed Zaburia, Hideyutuha, Hoithram, alladad Khan, Sharaflin, and Ali Hosam.

+ Major Pullan reports favourably of all his European Assistnnts, and commende Sub-Survegore V. K. Godboli Nersu Dinkar, K. Govind, Ganeah Rumehundra, K. Vital, and Tukaraw Chowdry.
but the village boundaries have been obtained by direct surrey, as it was found that the transfer of the boundaries in such hilly country from the Bombay Revenue Survey maps would not be satisfactory. A comparison, however, has afterwards been made in office between the boundaries according to the tro surveys.

76. The area surveyed topographically in the Deccan is 1,150 square miles, and in the Konkan 845 square miles. The total area of 1,995 square miles is less than the outturn of the previous year loy 220 square miles, but the decrease is stated by Colonel Macdonald to be due to the nature of the woot in the Konkan, where the country itself is very intricate, being hilly ad largely covered with jungle, and where also the smaller villages necessitated great increase in the boundary traversing beyond what had hitherto been required in the Deccan. Colonel Macdonald anticipates that there will be a still further reduction in the out-turn when the work is entirely confined to the Konkan.
77. The preliminary triangulation for future work in the Konkan has been extended over an additional area of 2,520 square miles; and the boundary traversing in advance has been completed of 475 square miles. The triangulation is comprised within 71 secondary triangles and 271 tertiary triangles, besides which there are 124 points fixed by intersections. In these triangles, the average differences found on comparison of common sides are, 4.87 inches per mile for the secondaries, 6.29 inches for the tertiaries, and $12 \cdot 1$ inches for the intersected points. The heights of 126 points have been determined by means of vertical angles; these determinations of height have been verified by independent observations to the same points, resulting in an average difference of 3.72 feet. Mr. G. H. Cooke, Assistant Superintendent, who carried on the triangulation, experienced the same difficulties as last season from the hazy state of the atmosphere, and his progress was also much hindered by the attacks of guineaworm amongst the siguallers, not one of whom is said to have been free from the malady. Check surveys aggregating 323 linear miles were measured in the open parts of the country; in lilly parts, the work of the topographers was checked in situ. Colonel Macdonald himself visited and inspected every Surreyor's scetion.
78. The geograplical limits of 4 sheets of the Deccan series of standard maps, extending over detached portions of Deccan Districts, embrace a considerable area included within the old topographical survey of the Nizam's Dominions; these sheets have been filled up to margin by transferring the details from the old maps. An area of 1,260 square miles has thus been added to the mapping of the season, and the total area which has been drawn is 3,255 square wiles. Iu Colonel Macdonald's office, a "Reduction" to the scale of the Atlas of India has also been drawn, covering an area of 7,650 . spuare miles of present and past seasons' work, to be used as a guide to the engravers of the Atlas, but this map is still somewhat incomplete.
79. During the coming season, the triangulation will be extended northwards to Latitude 20°, which is the limit of the area allotted for survey to this party. The topographical survey will be confined within sheets $75,77,78,79,83$ and 84 .
80. The office of the party was inspected at Poona in July. The ficld sections were found to have been surveyed with care, and the final maps were being drawn in good taste.

A descriptive report of part of the country surveyed, submitted by Colonel Macclonald, is given in the Appendix.*

[^11](D)ECAN TOPOCRAPHCALSURYEY

XV.-SHOLAPIUR AND RATNAGIRI SURVEY (No. ll PaRTY, REVENUE BRANCH).

81. This party left recess quarters at Ponua on the 10th November 1879, and procceded by rail to Sholapur, in the neighbourlood of which town field operations were immediately resumed. Field work was continued up to 6th May 1880. Major Hutchinson held charge of the party during the whole of the field season, but for three months of the recess, while Major Hutchinson was absent on privilege leave, Mr. J. McGill held charge. The topographical outturn is 2,028 square miles, part of which area had to be triangulated, as well as surveyed in detail; and the area of preliminary triangulation and traversing done in advance for next season is 1,584 square miles. The completed area is included in sheets $50,50 \mathrm{~A}, 55$ and 56 ; and the western portion of sheet No. 46, which had been done in 1876-77 up to the limits of the Deccan, has now been completed taking in a portion of the Konkan. The system of survey has been the same as before, and the 2 -inch scale has been continued. Village houndaries, however, have been obtained by direct survey, and not by transfer from the Bombay Revenue Survey maps, as in former years. The survey of the city of Sholapur, on the scale of 80 inches $=1$ mile, at the expense of the Municipality has been commenced, and about one-third is completed. The map on the 80 -inch scale will be in several sections, but a general map of the city, having the cantonment added to it, on the scale of 8 inches $=1$ mile, is also being prepared.
82. The final mapping of sheets Nos. 46, 50, 50. $, 54,55$ and 56 has been completed on the 2 -inch scale suitable for reduction by photography to the 1 -inch scale for publication on sheets of the standard size. Sheet No. 50A, of which a portion only has been surveyed, has been drawn up to marginal limits ly transfer from the maps of the old topographical survey of the Nizam's dominions. In addition to the ordinary computations of the season, the heights of all the previously published sheets have lieen revised in accordance with the results of the recent operations of the Bombay Tidal and Leveling Party. The drawing has been completed of the sections of the survey of Satara City, scale 80 inches $=1$ mile, executed during the previous year; and the sections, $2: 3$ in number, have been published at the Government Photographic Press at Poona. A general map of the city and cantonment of Satara on the scale of 8 inches $=1$ mile has also been published.
83. The triangulation is subordinate to several of the triangles of the Bombay Longitudinal Series of the Great Trigonometrical Survey, and a comparison has been made between the direct distances of two Trigonometrical Surrey Stations and the computed distances by minor triangulation, showing that the average crror of the later is 2.9 inches per mile. Check surveys have been measured to the total extent of 181 linear miles, whereby the work of each of the topographers has heen carcfully tested; the result in most eases was rery satisfactory. Shect No. 46, as it includes a very difficult hilly country, was examined on the ground by Major Hutchinsou personally.
8.4. Duting the ensuing season, the topographical survey will be continued into shects Nos. 60, 61, 62, 67 and 68, sheets Nos. 60 and 61 having been already triangulated, and the rillage boundaries partially traversed.
84. The recess office of the party was inspected at Poona in July. Good progress had been made with the final maps, aud the drawing was being done (arefully.*
[^12]
MAUZAWAR OR VILLAGE SURVEY.

XVI.-DERA ISMAIL KHAN AND RAWALPINDI DISTRICTS (No. 1 PARTY, REVENUE BRANCH).

86. The field operations of this party were resumed under the superintend.

Personuel.
Meutedant-Colonel D. Macdonnld, Deputy Superintendent 2nd .gride, in charge from 6th Decenber 1879.
Captain H. L. Suith, Assistnnt Superintendent lst grade (in charge from 1st October to 5th December 1879).
Mr. G. Housden, Surveyor lst grade, retired on pension from 1st November 1879.
G. B. Scott, Surveyor 3rd grade, joined from 14th Juno 1880.
W. S. Buttress, Surveyor 3rd grade.
" A. J. Gibson, " 4th "

- I. Torld, Assistant " 1st ",
- P. A. Peters \quad, 3rd
J. C! Kelly, Probationary Assistant Surveyor 4th grude, and

22 sub-survejors, \&c. ence of Captain H. L. Smith, Assistant Superintendent; but in the meantime Lieutenant Colonel D. Macdonald hai been posted to the party on the breaking up of his late party, which had been employed in the Sirsa District, and he relieved Captain Smith on the 6th December 1879. The party, of which the strength is noted on the margin, took the field in two sections; one section moved out from recess quarters at Murree during Octo. ber to continue their work in the Murree and Kahuta Tehsils of the Rawalpindi District; the second section marched down to the Dera Ismail Khan District, and resumed work there on 15th November. Some of the Surveyors continued at work in the Murree and Kahuta Hills until the end of May; in Dera Ismail Khan, field work was closed on 1st April.
87. The survey of the Murree and Kahuta Tehsils, which has been done for the Forest Department, has now been completed; and, at the request of the Conservator of Forests at Murree, the survey has been extended so as to include two small Forest Reserves in Tehsils Rawalpindi and Gujar Khan. For the Forest Department, the "Kala Chitta" Range of hills in the Rawalpindi District still remains to be surveyed, but the preliminary triangulation of the tract has nearly been finished.

The following statement shows the outturn of completed survey, during the season, both in the Rawalpindi and Dera Ismail Khan Districts :-

In addition to the above, the preliminary boundary traversing of $1,934 \cdot 3$ square miles in Yargana Bhakkar of Dera Ismail Khan has been done, besides the preliminary triangulation of 450 square miles of the Kala Chitta Range in Rawalpindi.
88. Respecting the country surveyed in Dera Ismail Khan, Coloncl Macdonald reports :-

[^13][^14]INDEX MAP OF DERA ISMAIL KHAN \& BANNU DISTRICTS

[^15]Aublished under the direction of Major-General J.T.Walker, C.B-R.E-F.R.S., Surveyor General of tridia
Surveyor Genemals Bifice Gilcution. Novmher
1880

L(0)WER PROVINCES SURVEV

Abluished under the direction of Mrior-General J.T.Walkor, C.B-R.E: F.R.S., Surveyor Goneral of India
Photozincographed at the Surveyor General's Offiow, Calaithe:
Surveior Generals Office, Culcutta, November
1880

The topograplyy in Dera Ismail Khan has'been tested by 85 linear miles of check surveys. As a check on the angular work of the preliminary traversing, 22 azimuths were observed showing that an average correction was required of one minute in every 16 angles. Connections were made with 6 stations of the Great Trigonometrical Survey, and the direct distances by triangulation have been used to correct the errors of the chain measurements. The average error in the chaining was found, on comparison with 6 triangulation rays, to be ± 785 foot per mile. All the mapping on the 4 -inch scale has been brought up to date; and copies of the maps have been prepared in the usual manner for record with the District Officer.
89. In the Rawalpindi District, the country in the Kaluuta Tehsil, where the operations chicfly were carried on, is described as leeing very difficult to survey on a large scale, though it is less mountainous than the Murree Tehsil where the surveyors were employed last year. The number of stations of which the hights had been determined during the previous season was insufficient; and observations for height were taken last season to 250 points. There is now an average of one height to every 2 square miles in the Kahuta Tehsil, but the heights in the Murree Tehsil are still deficient and a few more observations will be taken at the commencement of next season. The final maps of these Tehsils on the 4-inch scale will be prepared on graticule sheets in size $3 \frac{3^{9}}{4}$ latitude $\times 7 \frac{1^{\prime}}{2}$ longitude, but the maps will not be completed until the boundaries of the Forest Reserves have been adjusted; and in the meantime, the Forest Department has been supplied with photozincograph copies of the field sections. These field sections are of uniform size, $3 \frac{3^{\prime}}{4}$ latitude $\times 3^{\frac{3}{4}}$ longitule, and each includes an area of about 15 square miles.
90. The following areas remain for survey:-

About 2,800 square miles in the Thal portion of the Dera Ismail Khan District, of which one-half will probally be surveyed next season.

The Thal portion of the Muzaffargarh District, in area about 1,000 square miles, to be taken up after the completion of Dera Ismail Khan.

The Kala Clitta Range in the Rawalpindi District, which contains an estimated area of 600 square miles, and of which about 4.50 square miles will probally be surveyed.
91. The office of the party was inspected by the Deputy Surveyor General at Murrec during September. The drawing of the maps was being carefully executed and the numerical records systematically prepared. The favourable results are largely due to the close supervision which Lieutenant-Colonel Macdonald exercises over his establishment.*

XVII--Khorda governiment estate, district pooree (No. 7 Party, levenue branch).

92. Mr. R. B. Smart, Deputy Superintendent 2nd grade, who had

Personnel.

Mr. R. B. Smart, Deputy Suporintendent 2 ul grade, proceeded on privilege icave for 3 months from furenion of Ilth Oetober 1879, and on furlough for 2 years from 10th January 1880.
" J. Camplell, Assistant Superintendent lat grado, in charge from llth October 1870.
" A D. Smart, Surveyor 3rd grade, placed on the half pay list from 1st January 1880.
" C. David, \quad W. R. Vyall, $\quad " \quad$ 4tlı grade. retired on pension from 1st January 1880 ,
"W.R. Vyall, ", 4th grade.
\because H. Dowman, " \quad transferred to No. 2 party Hauthawndedy District, British Burmn, from 1at November 1879.
, T. II. Dunne, Assistant Surveyor 1st grade.
" G. W. Jurbo. " $"$ transferred from late No. 9 jarty, Cuttack Iltigntion Surves, from lst April 1880.
" J. IL. Scott, Assistant Surveyor 2nd erade, transferrivl fiom Into No. 9 pmrtg, Cuttack Irrigntion Survey, from 1st April 1880 .
" G. Complbell, Assistant Survegor, Brd ernde, transferred to No. B party, Bassein District Survey, llititieh Hurmin, from lat November 1879, nud 16 Sub-Survegora, \&c.

Temporary Esfablishment
94 ilraftamen and aren entenlators.
hitherto been in charge of this party, having obtained leave of absence, was relieved on the 10th October 1879 by Mr. J. Campbeli, Assistant Superintendent, who has since conducted the operations. The change in procedure, referred to in paragraphs 167 to 171 of last report, has been introduced; and of the arca remaining for

[^16]cadastral survey, the field measurements have been left to be carried out under the orders of the Settlement Officer of Khorda. For the rest of the work, which still remained for the professional party as noted in paragraph 165, field operations were resumed on 6th January 1890, with an establishment of the strength which is given in the margin on the preceding page.
93. It was known that the chief tract for survey-the mals or forest lands of Banpur-was at all times unhealthy, but especially so in the carly part of the cold season, and the local officers recommended that nothing should be done there until the beginning of January. Mr. Campbell reports as follows on the extreme unhealthiness of the tract:-
"Our greatest foe was the climate; without a single exception, every one who entered the mál jungles was sooner or later struck down with fever. Entire parties fell torether on the same day, and sick men deserted by dozens at a time; the work of forming new parties and pushing them ou to work was iucessant."

As to other difficulties met with during his survey, Mr. Campbell further reports:-
"The Banpur máls had never before been demarcated; the people, occupying the bamlets scattered in the valleys, had hitherto escaped oll taxation: they cultivated the open patches of land without let or hindrance. It is not surprising, therefore, that they looked upon the survey as an innovation, and, as far as possible, evaded giving any help. It was with extreme difficulty that coolies were got for clearing the lines, and there was constant trouble and difliculty as regards supplies."

Mr. Campbell acknowledges, in the following hearty manner, the great assistance he received from the Officiating Collector of Pooree :-
"I desire to mention the deep obliration I am under to Mr. F. F. Handley, late Officiating Collector of Pooree, for the great help, Le gave the survey at a very critical time. His timely visit to Banpur, and the steps he there took to ensure help being given to the survey by the headmen of villages, at once removed all anxiety about the work. But for Mr. Haudley's help, the Banjur máls could not have beeu nll surveyed this year."

Owing to the sickness among the establishment, and to the difficult nature of the country, it was found desirable in March to strengthen the party by attaching to it Messrs. Jarbo and Scott, whose work had come to an end with the Cuttack Irrigation Survey, and by transferring three Sub-Surveyors from parties in the North-Western Provinces.
94. When field operations commenced, great uncertainty existed with the Settlement Establishment as to the extent of country appertaining to the Banpur máls of the Khorda Estate, and the first line of demarcation excluded a tract of hilly country believed to belong to Goomsur of Madras. T'his tract has been surveyed as an overlap beyond Khorda so as to form a connection with the Madras Surrey and with the Topographical Survey of the Tributary States of Orissa, but it is now stated that the tract will be incorporated with the Banpur malls of Khorda. In the meantime, the boundary of the Estate in that direction is incomplete. The area surveyed in the Banpur mols is 125 square miles, the scale of survey being 4 inches $=1$ mile.

Simultaneously with the 4 -inch survey of the Banpur máls, the boundary survey of the detached villages of Parganas Balbhadrapur and Tapang was carried on; and skeleton plots of the boundaries, on the 32 -inch seale, have been supplied for the use of the Sottlement Survey Establishment. The detached villages are 68 in number and cover an area of about 39 square miles, but a very much larger area had to be included in the traversing in order to connect the survers of the detached villages.

The final work of the field season was the survey of the hills, in the area of which the field measurements were being carried on by the Settlement Establishment. These hills have been surveyed on the full scale of 32 inches on the origiual settlement slicets, instead of on the scale of 4 inches as had at first been intended. The hills are scattered over many villages and cover an area of 40 square miles.

The angular measurements were checked by 12 observations for azimuth. The topography in the baupur mals was tested by 10 linear miles of check surrey carried through the principal valleys; the Assistant Surveyors also frequently visited the topographers working in the hills and tested the surveys. The field work was completed on 30 th Junc.

95 . During the recess season, the completion of a large number of records, that have been accumulating for the past four years, has been attended to in

N。W, PROVINCES SURVEY

addition to the regular mapping of the past season. On the 1st January 1880, 2,608 cadastral maps remained to be completed after the results of the settlement examinations had been communicated; it is expected that all these will be lodged in Calcutta by the 31st January 1881.

When the drawing is completed, the whole of the Khorda Estate will be mapped in 65 general maps on the 4 -inch scale; of these, 48 containing the area surveyed by this Department are finished; the remaining 19 have been plotted in skeleton, but they will stand over until the cadastral survey now in the hands of the Settlement Establishment is completed.*

CADASTRAL or FIELD SURVEY.

XVIII.-banda and mirzapur districts (no. 5 Party, revenue BRANCHI).

96. This party, of the strength noted in the margin, returned from recess

Personnel.

Colonel F. C. Anderson, Deputy Superintendent 1at grade, in charge.
Mr. E.J. Juckson, Assistant superintendent 2nd grade, on furlougl to Eorope from Ist May 1880.
C. W. Campbell, Snrveyor 1st grade.
", E.G. Little, , 4th
", R. B. Smurt, Assistant Surveyor "1st grade.
$"$ I. F. Freeman, Ditto 2 nd " on furlough from 1st May 1880.
"W. M. Kelly, Ditto 3rd "" tranaferred to No. 10 party from 1st
November 1879.
, E. I.S. IVill, Ditto 3rd \quad
"P.C. H. Smart, Dito
and 2 s Sub-Survejors, \&c. 4th "
Temporary Establishment.
233 fickl surveyors and others.
quarters at Naini Tlal and resumed work, partly in the Banda District, and partly in the Mirzapur District, on 1st November.

In the Banda District, the work has chiefly consisted of the survey of the Forest Reserves on the scale of 4 inches $=1$ mile. An area of $50 \cdot 77$ square miles was surveyed, and the total area of these Reserves, including the survey of the previous season, is now found to be 137.87 square miles. To complete the cadastral survey of the Banda District, there still remained $19 \cdot 22$ square miles for survey on the 16 -inch scale; this area has been surveyed, and the District is now finished. In District Mirzapur, the following statement shows the extent of the completed survey:-

Names of Parganns.	No. of villages,	Area in equare miles.
Kantit	775	401.73
Haveli Chunar	30	19.95
Total . .	805	$42 \cdot 68$

In addition to the above, the preliminary boundary traverse survey of 117 square miles has been done in advance for next season.
97. Regarding the discontinuance of the field books of cadastral measurements, Colonel Anderson reports as follows :-

[^17][^18]experieuced field surveyor, having once become familiar with the field book aystem, will alpays make his own field book in the cool of the day for personal convenience, so as to utilise the hotter hours by plotting from it on to bis plane table sheets; as, therefore, the money anved by the discontinuance of the field book is insiguificant, and we lose thereby a pernanent record of our measurements, I hope we may be allowed to revert to the old system, iu which, howerer, a change could easily be introduced, which would save the expense of an elaborate index."
98. Stoue pillars have been placed by the Settlement authorities at the trijunctions of village boundaries, and smaller slabs at the intermediate bends in place of the usual earthen mounds. Other special marks have been fixed by the Survey Department at all the theodolite stations on the boundary, but the expense of these is recovered from the landowners, as the marks serve also as part of the boundary demarcation. Many fields were met with in villages close to the Ganges which had no ridges to define their limits, the extent of which could only be ascertained with the aid of the putwaris, who took measurements from certain recognised marks in other fields. After the limits of these fields had been determined, the Collector of the District, at Colonel Anderson's sugges. tion, tried to get the owners of the ficlds to demarcate the boundaries with stone slabs. The attempt to get the landowners to move in the matter was not successful; but in the villages, under the management of the Court of Wards, the fiold demarcation has been carried out at a very small cost.
99. For the maps of the Banda District, the boundary along the southern border touching on Foreign States was in the first instance carefully compared with the maps prepared ly Mr. Spedding, who had been deputed to adjust the boundary in $1870-71$. In a few instances, the boundary line was found to be wrongly interpreted by the demarcating Officer associated with the surver, owing to the very small scale (2 miles $=1$ inch) of Mr. Sperding's maps; these errors were brought to the notice of Mr. McConaghey, the Collector of the District, who personally visited the boundary and rectified the errors.
100. The field survey has been tested by 167 linear miles of checks measured by Surveyors and Assistants, and by 814 miles measured ly Native Inspectors. As checks on the angular work of the boundary traversing, 20 observations for azimuth were taken, requiring average corrections to be applied to the traverses of about $2 \frac{1}{2}$ minutes on crery 100 angles. Comnections have been made with 17 stations of the Great Trigonometrical Survey, and the coordinates of the measured traverses have been made to agree with the valucs obtained from the direct distances of the triangulation. The average error of the chaining on the comparisons of 12 direct distances is 1.9 foot per mile. Colonel Anderson has adopted a novel method for instructing his Sul-Surveyors in hill sketching ; his description of it is given in the Appentix.
101. In the Banda District, the small area surveyed cadastrally has added ten 16-inch sections, bringing the total number of sections for the District up to 3,364 . Of these, the drawing of 1,097 has been completed during the season, and in all 2,788 sections have now been lolged in Calcutta. The remaining 576 sections are retained, partly for completion of the drawing, but chiefly for reduction to the 4 -inch scale. Of the 95 general maps of Banda, noted in paragraph 132 of last report as remaining to be completed, 29 have been lodged. The scason's outturn in the Mirzapur District has been mapped on 747 original sections, but this number will be increased by the separation into maps of single villages of the sheets on which the villages had been congregated, this is ex. plained in paragraph 115 regarding the increase to the number of the Ghazipur shects. Of these sections, 601 have been lodged in Calcutta; the remaining 146 are still somewhat incomplete. The gencral maps of District Mirzapur, which are to be prepared on the scale of 2 inches $=1$ mile, have not yet been commenced.
102. The office of this party was inspected by the Deputy Surveror General at Naini Tal during October. The check surveys on being compared with the maps showed the cadastral survey to lare been done very accurately; and great pains were being taken to ensure accuracy in the computations of arra. Colonel Andersion, as usual, has taken upon himself a very large share of the examination of the maps.*

[^19]
N.WN.PROVINCES SURVEV

Published under the direction of Major-General J.T.Walker, C.B-R.E-F.R.S., Surveyor General of India.
Surveyor Generals Office, Calcutia, Novanter
188)
XIX.-JaUnpur district (No. 6 Party, ReVende branch).
103. This party, in strength as noted on the margin, returned from

Persounel.
Mr. E. T. S. Johmen, Deputy Superintendent 3rd grade, in charge.
P. A. G. Cowley, Surveyor 2nd grade.
, J. S Pemberton, " 3 rd grade, tranaferred from No. 2 party, Hanthawaddy Diatrict Survey, Britisl burma, from 1ahs October 1879.
J. H. O'Donel, Surveyor fth grade, transferred to No. 8 Party, Busscin District Survey, British Burma, from 1st July 1880.
J. S. Swiney, Assistant Survegor, 2nd grade.
E. J. Martin,
A. W. Smart, " ", 3̈rd e" \quad rade, tranaferred to Nagn Hills Topographicul Survey from 1st December 1879.
E. H. S. Gnaper, dssistunt Surveyor 3rd grade. transferred from Kamrup
C. S. Kranl, \quad Lukhiraj Survey from list Novenuber 1879. and 28 Sub-Survoyors, \&c.

Temporary Establishment.
237 field survesors and others. recess quarters at Hazaribagli to resume work in the Jaunpur District on the 22nd October. Field work was closed on the 15th April, when the office establishment returned to Hazaribagh.
104. The outturn of cadastral survey during the season is given in the following table:-

Names of Parganas.	Nomber of villagen,	Number of fielus.	Aren in acres,	Area insquare miles.	A verapegize of Redds.
Porgamne Haveli, Zafarabnd, Chandrak and portions of l'urganas Mariahu, Saremu, Bialki, Duriyapar, Pisara, and (tuzura.	1,371	9,25,928	3,36,220.85	525.35	036

In addition to the above, $315 \cdot 56$ square miles of village boundary traversing have been doue in preparation for next season's cadastral operations.

The city of Jaunpur has fallen within the area which has been cadastrally surveyed, and has been surveyed on the scale of 16 inches $=1$ mile; the boundaries of the 46 mohullas, or sub-divisions of the city, as well as the fields and blocks of buildings within the mohullas, have been surveyed in accordance with old Settlement maps.
105. Regarding the doing away with the field book of cadastral measurements, Mr. Johnson reports :-
"The Amins surveyed much faster on this system, and the purtalling proved the work to be equally good as belore; but it has not been so satisfactory as when we had the field books, which used to be of great assistance to draftsmen when inking in the maps; for in many instances, where the ground is intricate, considerable dilliculty is experienced in making out the items, and portions of the $16-\mathrm{inch}$ shects of this intricate bature have had lo be seot out several times for re-survey."
106. Considetable difficulty had been experienced during the previous season in ascertaining the boundaries of fields in rice lands, as a "field "in such lands often consists of several plots or terraces prepared for the purpose of rice cultivation; it was, therefore, arranged that the "field," boundaries should be marked with low mounds of earth by their proprietors to guide the Amins as to how the terraces should be grouped into fields. The demareation of village boundaries by the Settlement Staff is reported to have been very backward; and in Parganas Ungli and Mahaul, the Surveyors are said to have been several times obliged to stop work, owing to there being no marks along the village boundarics. The stone pillars at the trijunctions were not fixed prior to survey, and cousiderable inconvenience and delay were caused therely.
107. Owing to the abolition of the ficld-look system of survey, it was thought necessary by the Executive Officer to increase the usual amount of purtal or check survey. The total length of these check surveys run by Assistant Surveyors is 215 miles, and by Native Inspectors 1,814 miles; it is reported that the quality of the work was found to be very good. As checks on the angular measurements of traverses, 28 obserrations for azimuth were taken, showing an arerage correction to be required of one minute per 100 angles.
108. The season's outturn has been mapped on 1,069 sixteen-inch sections; many of these consist of several villages congregated on one shect, but the number of sections will be increased when the villages are separated during publication. The sections have been sent down to Calcutta for publication at various times during the season; now (31st December 1880) all, except 16 kept back on arcount of disputed boundaries, have been lodged, and 825 sections have been publishied.

The general maps, on the scale of 2 inches $=1$ mile, have been brought up as far as the maps of the cadastral survey have been available for reduc. tion. None of the sheets are as yet entirely filled up to margin.
100. To complete the cadastral survey of the Jaunpur District, there remains an area of 472 square miles, which will be finished next season.

After completing Jaunpur, this party might have been suitally employed on the survey of the Benares District; and it is to be regretted that the Government of the North-Western Provinces should have ordered the survey of the Benares District to be deferred for the present. The party has been brought to a high state of efficiency under the superintendence of Mr. Johnson; and should the cadastral survey of any District in any other Province be in contemplation, it is very desirable that the services of this party should now be utilised, as it has been found from experience that a new cadastral party when required is not readily organised; it is hoped, therefore, the party may be saved from dispersion.
110. The recess office of the party was inspected by the Deputy Surveyor General at Hazaribagh during September. An examination of the checks showed the surveys to have been carefully executed, and the state of the maps and other records reflects great credit on Mr. Johnson's watchful supervision.*

XX.-GHAZIPUR DISTRICT (NO. 4 PARTY, REVENUE BRANCH).

111. This party, of which the strength is given in the margin, returned

Personnel.

Major W. Barron, Deputy Superintendent 3rd grade, returned from privilege leave nud resumed charge on the ifternoon of 3rd November 1879.
Mr. E. C. Harrett, Assistunt Superintendent 2adgrade, in eharge up to the Mrd November 1879, trunaferred to No. 8 Party, Bnesein District Survey, which he joined on the 11th November 1879,
W. A. Wilson, Surveyor 3rd grade.
" H. T. Hanly, ", 4th "
$"$ S. O. Madrus, Δ ssisthant Survejor 2ad grade.
W. D. Corbett, Ditto 2nd
J. Murphy, \quad 3rd ", transferred to No. 2 Party, Hantha. waddy Diatrict Survey from 1at December 1879.
L. F. Herkeley, Assi-tant Survejor 4 th gride.
W. H. 1. Ewing, ", 4th ", went on lenve (m. c.) for 2 monthe from 2nd July, and was trnnaferred to No. 8 Yarty, Baseein District Survey.
C. B. 'Liylor, Uffice Assistunt,
and 31 Sub-Surveyors, \&c.
Temporary Establishment.
173 Geld surveyors and others. from rece'ss quarters at Naini Tal to resume field work in the Ghazipur District on the 26th October 1879. Field operations were continued until the 30th April 1880, and the recess office was again opened at Naini T'al on the 9th May.
112. The outturn of completed survey has been as follows:-

Pargnus.		No. of Villuges.	Aren in square miles.
Zamaniah	- -	181	171.91
Mabaich	. .	133	87.52
Karanda		88	$43 \cdot 11$
(ihazipur		299	98:38
Muhammadabad		721	177.78
Say yidpur Bhilari		102	37.85
	Total.	1,524	616.75

An overlip of 69.69 square miles on the scale of 2 inches $=1$ mile hins also been surveyed in Districts Benares and Shahabad; and the boundary triverse surrey of 1,131 villages, area $390 \cdot 23$ square miles, has been prepared iu advance

[^20]NOTE Aublished under the direction of Major-General J.T.Walker, C.B-R.E-F.R.S., Surneger General of India.
The figures and hines in dots reprcsent the
Survgor Gencralb Office. Culcutta, November
numbers and limits of the engraved
sheets of the Atlas of India
for the field measurements of next season. The City and Cantonments of Ghazipur have been survcyed, on the scalc 1.6 inches $=1$ mile, as part of the cadastral operations.
113. Regarding the system of cadastral survey and the clange in the manner of recording the field areas, referred to in paragraph 153 of last report, Major Barron reports as follows:-
"No field books of field measurements were prepared. The measurements were ploted on the original plans at once in the field. This rave opportunity of testing the accuracy of the work on the spot, and is a far quicker metbod than the system of recording in a field looks and ploting afterwards. There were no khasras prepared for the Settement Olficer, as formerly used to be done; instead of these, he is supplied with eopies of the field arca calculation books having a column added for remarks, which requite no additional labour in their preparation. It is calculated that from these two simplifications, viz., doing away with the field looks of measurements, and the khasras, about 100 square miles additional area have been surveyed, and the work has cost less by Rupees 30 per sguare mile than it otherwise would have done."
114. The field survey has been tested by 497 linear miles of check surveys measured by the Deputy Superintendent and his European Assistants, and by 1,081 miles of checks measured by Native Inspectors. Connections liave been made with four stations of the Great Trigonometrical Survey, and the values of the direct triangulation rays hare been made use of for correcting the chain measurements of the traverses; the average of the corrections required, in two cases where plus, is 5 foot per mile, and in six cases where minus, $1 \cdot 43$ foot per wile. To check the angular work, 88 observations for azimuth were taken.
115. 'The season's outturn of 1,524 villages was originally mapped on 861 sheets, scale 16 inches $=1$ mile, having in many instances several villages congregated on one shect. This system, which was introduced with the double object of reducing the labour of preparing the sheets in executive offices and of lessening the cost of publication, has not been approved by the Government of the NorthWesteru Provinces, who require that each village should be shown singly; the villages are now, therefore, being separated, so that the number of sheets will be increased considerably. The sheets, as thry have been completed, have been sent down to Calcutta for reproduction by photozincography ; and, up to lst October, 510 slicets had been forvarded comprising an area of 352 square miles. Besides providing for the speedy publication of the sheets, Major Barron also supplied the Settlement Officer with 111 tracings of the maps of villages in the low-lying lands of the Ganges River, so as to emable the Record of Rights in these villages to be prepared during the year of survey.

The gencral maps, on the scale of 2 inches $=1$ mile, are being prepared by reduction trom the 16 -inch plans, as the cadastral survey progresses; but none of the maps have yet been completed.
116. The demareation of trijunctions, which is enrried out under orders of the Settlement Offer, is very backward in some parganas, and a good deal of the bounlary traverse survey had to be carried on before the trijunction stones had been imbedded, which is always an objectionable procedure. There are several disputes still unsettled, and several discrepant boumlanies caused by defective denareation ; from both causes, the maps of 58 villages remain incomplete.

Baked eliay cylinders have been imbeded at all theodolite stations on the village boumdaries.
117. Referring to paragraph 151 of last report, in which it is stated that, by reason of the ruling of the Govermment of the North-Western Provinces requiring the boundary of districts Budaun and Barcilly,-where falling on the Ramguuga, - to be the main stream of the river, a diffeculty had arisen as to how the eaps and overlaps between the surveys of Budam and Bareilly should be accounted for on the maps of the recent survey of Budam, the diffeculty has been disposed of in the following manner: It had previously been overlooked that a special survey of the village boundaries in allurial lands of the Ramgrung River, "to facilitate the ammal settlement of the alluvial lands," had been carried out in 1852-53 by Lieutenant T. J. Burgess, at which time a set of 4 -inch maps had been prepared showing continuously the rillages of both the adjoining Districts on one projection. It was found, on the mals being referred to, that the special survey had been extended beyond the action of the river, and that the points, which had been fixed as the trijnactions of the village boundaries on the high lands, had been identified and adopted as the village
trijunctions during the recent survey of the Budaun District; it was thus practicable to make a combination of the two surveys, aud Major Barron has introduced the boundaries of Lieutenant Burgess' survey on the village maps of Buhaun, thus showing the limits to which the village lands may be extended, should it be desired to uphold the settlement of 1852, while he has retained the course of the main stream of the Ramgunga as it flowed during seasou 1878-79, the year of survey, as the present record of the District bounlary.
118. An opportune illustration of the alvantage of possessing a record of the boundaries of villages bordering on a shifting river,-in the manner of the survey under Lieutenant Burgess,-oceured during last season with respect to a disputed boundary in the valley of this very Ramginga River, and on the same portion where the boundaries of the old survey have been introduced on tho Budaun maps. The boundary in question, which entirely falls on land liable to submersion, had long been uniler dispute; and an attempted restoration of an old line by the Civil Authrities in 1873 having failer to give satisfaction, the Collector of Bareilly reported through the Board of Revenue that a proper adjustment could only be made with the aid of the Survey Department. The Government of the North-Western Provinces consequently requested that a Surveyor might he deputed to do the work, and the boundary has been restored in accordance with Lieutenant Burgess' map by a Sub-Surveyor deputed from Major Barron's party.
119. The recess office of this party was inspected by the Deputy Surveyor General at Naini Tal during October. The same state of high efficiency is being maintained as has frequently been reported of the Establishments under Major Barron's supervision.**

XXI.-HANTHAWADDY DISTRICT, BRITLSII BURMA (No. 2 PARTY, REVENUE BRANCII).

120. This party, which had been of half strength during the previous year,

Personnel.

Captain J. E. Sundeman, Deputy Superintendent 3 va grade, in charge.
Mr. F. Grant, Survey or 2nd grade, transferred from late 2nd division, Jhelum and Sirsh Survey, from the lat Noveuber 1879.
, H. Dowman, Surveyor th grade, transferred irom No. 7 party, Khorda Estate Survey, from the lat November 1879.
" C. A. II. Scanlan, Surveyor 4th grade, transferred from Survegor Gieneral's Office from the lst November 1879. On sick lenve from 9th June 1880. Hesigued from 1st October 1880.
„ D. A. King, Assistant Surveyor 1st prade.
". J. MeHIntion, Assistant Surveyor 2 nd grade, transferred from HeadQuartera Ofice, Culeutta, from thic 1st Junuary 1880.
, G. E P'urker, Assistant Surveyor 3rd grade.
, J. Murplig, , \quad, \quad tranaferved from No, it porty Ghazipur Survey, from 'the 1st becember 1879 , temporarily attached to Leveling party from the lst Februncy to the 31at May 1880 .
,B. M. Wilson, Assistant Surveyor 3rl grade, transferred from No. 9 purty, Cnttnck Irrigution Survey, from the 1st December 1879, nad 21 Sub-Surveyors, de.

Trmporary Establishment.
166 fich survesors and others.
Leveling.
Mr. J. Murphy, Assistant Survegor 3rd graile, Leveler froin the 1at Februnry to the Blet May 1 kso. was raised to full strength at the beginning of the field season, and, with the establishment as noted on the margin, resumed operations in the Syriam Town. ship of the Hantlawaddy District earl in December 1879.

Hindustanis and Burmans have been employed in about equal numbers as Ficld Surveyors. The Burmans, who had been trained by Captain Sandeman during the recess of 1879, fully justified the trouble that had been taken with them; and after instruction during another month in the ficld, the majority turned out fair surveyors, realising even more than might havo been expected from men in their tirst year of service. Burmans have heen very largely employed in office as computers of area, and as draftsmea. All the measurers and fiagmen were laken down from India, the experienee of the previous season having proved that these men could not be hired in sufficient numbers in Burma. No village balowe of ang kind was obtained. A good deal of rain in April obstructed the uperations, hut the party did not return to recess quarters until the middle of May, when the monsoon rains had fairly set iu.

[^21]BRUTISH BURMA SURVEY

121. The unit of survey has been the field; and the seale of survey has been that of 16 -inches $=1$ mile. The "holding" survey of the first season (paragraph 214 of last report) has been revised, and the area has been again included in the "ficld" survey of the present season. The total area of field survey is 762.6 square miles, which embraces the whole of the Syriam 'Township, excepting 31 square miles survered last year, and about 65 square miles of jungle land at the north-east extremity of the township, which is lialite to be flooded by the sen and where there are no villages. Preparatory boundary traversing has also been done in 130 square miles in the legu Township and 115 square miles in the Angyee Township At the request of the Chief Commissioner, the preparatory traversing has also been done for 60 square miles in the Tharawaddy District in anticipation of the sanction of the Government of India to the cadastral survey of that district, which had been recommended. The Tharawaddy District survey has since been ordered; and the traversing which has been done will enable the field measurements to be commenced without delay by the new party which has been raised for the Tharawaddy District. A small section of this party has been employed on leveling, and their work is reported on with the other leveling operations of the Departument.
122. In the completed area of 763 square miles,-after rejecting the large patches of jungle and waste, but including minor details of waste, \&c., mixed with the cultivation,-there are found to be 576 square miles of cultivated country with fields numbering 4,16,402, which gives an average size for the fielde of 9 acre.

The completed area includes 20 Waste Land Grants, having a total area of 13,457 acres.

The field survey measurements were plotted direct on the 16 -inch sheets, no fick books having been kept.

Check surveys have been measured aggregating 465 linear miles. These lave proved the general work to be good, but they also brought to light some errors, and several resurveys ware necessary. Azimuths were observed at 31 stations as checks on the angular measurements of the traverses. The linear measurements have been tested by comparison with 10 rays of the Great Trigmometrical Survey, showing in them an average error of -9.25 feet per mile.

No permanent demareation of boundaries has been done previous to survey; but during the course of the boundary traversing, baked clay cylinders have been imbodded at selected theodolite stations, and these cylinders are intended to take the place of all other permanent marks.
123. At the commencement of the field season, a Settlement Establishment took up the examination of the 31 square miles of field survey, which had been completed during the previous season, using tracings of the maps which had been got realy during the recess; aud it was desired by the Chicf Commissioner that continuous work should be supplied to this Establishment in order that the Settlement of six Cireles might be carried out during the scason, pari passu with the Surver. Tracings of the maps of these Circles, with field area statements, were therefore furnished as soon after survey as the drawing of the maps and computation of areas could be done; and, subsequent to the settlement examination, the maps have been corrected by remeasurement, where errors or omissions were discovered; so that in these six Cireles, which include an area of 432 square miles, the successive operations of Survey, Settlement investigation, and the final rendering of the maps ready for publication have all been done in one season. The Settlement investigation includes the grouping of the fields into cultivators' holdings; but the boundiaries of the holdings are not distinguished on the maps, as the holding boundaries are liable to chang.; and it is intended that a Settlement investigation regarding these boundiries should be made annually. The ammal changes will be noted on fresh eopies of the maps, of which 30 eopies of each are being printed. There is no cognizance of the holdings in any of the survey records, but the average area of the holdings in the Cireles which are settled is given by the Settlement as being tiacres in rice lands, and about 3 acres in garden lands. The average area of the kwins has been aseertained by the survey computations to be 1,792 aer's.
194. In the six Circles, of which the Settlement examination has been completed, there are 193 kwins, which are mapped on 669 sheets. These shects lave been received in Calcutta and are now being published ly photo. zincography. In the five Cireles not examined there are 101 kwins, which are mapped on 456 sheets. Manuscript tracings of these sheets have been sup. plied, on which the Settlement examination will be carried out; and the sheets will not be forwarded for publication, until all errors or omissions that may be discovered have been rectified.

In addition to the 16 -inch cadastral sheets, the preparation of the general maps on the 2 -inch scale has been proceeded with, as far as the cadastral area has extended. This area falls on eleven of the standard sized sheets, but of these only three could be completed up to margin.
125. One of the Assistant Surveyors of this party has been employed, in conjunction with an Assistant Surveyor from the Trigonometrical Branch, in measuring a traverse from a Trigonometrical Survey station for about 60 miles along the sea-coast for the purpose of determining the latitudes and longitudes of two marine beacons recently placed opposite the Krishna Shoal. The measured traverse was substituted for a series of triangles to determine the positions of these beacons, as from the nature of the country triangulation would have been very tedious and expensive. Accuracy in the traverse has been provided for by the independent measurements of the two Assistants.
126. Captain Sandeman's camp in the Eanthawaddy District was visited by the Deputy Surveyor General during March. The completion of the maps and area statements to meet the requirements of the Settlement Officer was then being prosecuted most vigorously, and great credit is due to Captain Sandeman for his arrangements, which allowed of the results of his survey being so speedily utilised for Settlement purposes. The pains which Captain Sandeman had bestowed on the training of Burman field Surveyors, was abundantly evident in the large share of the season's outturn which had been done by these men.*
xXIl-bassein disthict, bllitish burma (No. s party, revenue BllaNCH).
127. The orders of the Government of India having been received for the

Personnel.

Najor D. C. Ambrew, Deputy Superintendent 3rd grade, nssumed charge on the 11th November 1579.
Mr. E. C. Barrett, Assistunt Superintendent 2ud grade, joined on the 11 th November 1879, proceeded on furlough on the 22ud July 1880 .
H. It. Littlewood, Surveyor Brd grade, joined on the Bth November 1879.
,, J. H. O'Donel, Survesor 4th grade, joined on the 26th July.
" P. Ford, Surveyor 4th grade, joined on the 5th November 1879 ; died in Calculta, 21 st November 1880.
, G. Cnmploell, Assistant Surveyor 3rd grade, juined on the 11th November 1879.
„C. W. J. Ford, Assistant Surveyur 3rd grade, joined on the 11th November 1879.
"W. H. D. Ewing, Absistant Surveyor 14h grade, joined on the 9 th Angust 1 k80,
and 29 Sul-Surveyors, \&e
Temporary Establishment.
14t field surveyors aud others. despatch of a party for the cadastral survey of the Basscin District, British Burma, (conveyed in letter No. 366, dated 12th August 1879), Major Andrew who had been temporarily employed in the IIcad Quarters Office was nominated to the charge; and the party was formed partly of Surveyors and others of the late Cuttack Irrigation Survey, and partly of those withdrawn from Cachar. Before the final constitution of the party was determined on, Major Andrew was directed in September 1879 to proceed to Bassein, that he might juige whether the nature of the country required any special organization in his Establishment, and also that he might make all needful preliminary arrangements. On Major Andrew's return to Calcutta in October, the members of the different classes were collected, and the party numbering (with measurers and linc cutters, all of whom had to be taken from India) about 840 men embarked for Bassein early in November. Field uperations were commenced soon after the 16th November, the date on which the party reached Bassein.

[^22]BRDTUSH BURNA GADASTRAL SURVEY

128. The survey was commenced in the Bassein Township, where the boundarics of kwins had been demarcated, and an area of 346 square miles, comprised in 10 Circles, has been completed. Field measurements have also been taken over an additional area of 55 square miles; but in this area the survey has still to be tested. The preliminary traversing for the work of next season has been carried out over a further area of 449 square miles.

The country brought under survey is much intersected by tidal creeks, and the jungle land which fringes the crecks is, as a rule, liable to be submerged, while cultivation has been extended over nearly all the land beyond tidal influence. In the completed area, about 200 square miles are cultivated and the remaining 146 square miles consist either of waste land or of water. The average size of the fields is 75 acre.

The field measurements have been recorded on field books, as in the absence of preliminary traversing there were no boundary maps ready on which the fields could be directly plotted. The survey has been tested by 400 linear miles of check surveys, of which 16 miles were measured by Assistant surveyors and 384 by Native Inspectors. There are about 2 miles of these checks in each of the 188 kwins that have been surveyed. Check azimuths have been observed at stations on the main traverses averaging about 6 miles apart. One station of the Great Trigonometrical Survey has been incorporated with the traterses.
129. The demarcation done by the Civil Officers in adrance of the Survey, consisted of liglt posts intended only to be temporary, aud a commencement was mude during the season to carry out a permanent demareation, by replacing the posts at the trijunctions of kwins by others of a larger size; but this description of mark was alterwards abandoned in favour of a burnt-clay cylinder, which will be imbedded at all tri-junction theodolite stations, and at other selected stations on the kwin boundaries not more than half a mile apart.
130. The Chief Commissioner was very desirous that a commencement of the Settlement should be made during the first season of survey; and to enable this to be done, it was necessary that tracings of the kwin maps and statements of the areas of fields should be furnished to the Settlement Officer as early as possille. These tracings and statements were supplied for three Cireles, in area $=76.6$ square miles; the Settlement investigations were then carried out, and finally the maps were corrected by remcasurements where errors or omissions were discorered during the investigation.
131. Major Andrew reports the following to have caused delay in the progress of his operations:-

1st.-Diffculty of communication.-The country being so largely intersected with creeks, all communication is nccessarily carried on by water; but boats wore available for hire only in small numbers, and could with difficulty be procured even for the temporary convenicnce of ferrying the survey squads over creeks in the course of their daily work.
2nd.-The heavy line-clearing.-Fringes of dense jungle are iuvariably found on the lanks of the numerous creeks, and, as the latter usually form the kwin boundaries, a very large number of the boundary lines had to be cleared through jungle. For the future, the lines will not be taken so close to the crecks, but will be kept, as far as possible, clenr of the jungle.
3rd.-Defective demarcation.-A large amount of extra work was caused owing to a misunderstanding regarding kwin boundaries; many boundarics intended to follow the edges of fields were first taken straight on account of the insufficient number of posts that had been crected.
4th.-The early setting in of the rains.-Rain commencel to fall about lst April and greatly retarded the field work, which on this account had to be continued until June, or at least a month longer than had been expected.

5th.-The sickness of the establishment.-The disease most prevalent was dysentery, which is believed to have been caused in a great measure by inferior and adulterated food. There were 23 deaths during the season.
132. The head-quarters of the party at Bassein were visited by the Deputy Surveyor General during March. The work was then being prosecuted encrgetically, in face of difficulties which all the members of the party had to contend with, in the exceptional features and circumstances of a new country.
133. The party has to regret the loss by death of one of its members, Mr. P. Ford, Surveyor 4th grade, who manfully remained at his post after being attacked by severe illness, but who succumbed to the disease he had contracted, shortly after reaching Calcutta where he had come on medical leave.*

MISCELLANEOUS.

XXIII.-SURVEYS IN THE DARJEELING DISTRICT: AND IN SIKKIM.

134. On the termination-at the end of the field season of 1877-78-of the

Personnel.
Lieut. H. J. Harman, R.E., Aesistant Superintendent in charge.
Mr. W. O'Sullivan, Surveyor 4th grade.
, W. Robert, Assistant Surveyor 2nd grade.
\because D. J Colling, \quad 3rd \quad
Mohibulla Khan, Sub-Survegor.
Bhawrai Din, \quad and 4 others. triangulation and geographical operations in Assam on which Lieutenant Harman and his party had been employed for some years, the party was sent to recess at Darjeeling in order to be available for the prosecution of similar operations in Sikkim, to those on which they had been engaged in Assam. It happened, however, that a rariety of survey operations were urgently wanted in the Darjeeling District for the demarcation of new boundaries and the settlement of disputes regarding old boundaries and for various other local requirements. The Government of Bengal urged that these surveys were of far more immediate importance than a geographical survey of Sikkim, and recommended that Lieutenant Harman and his party should at once be employed on them. The Surveyor General readily assented to this proposal as no other survey party was available for the purpose at the time, and the amount of work to be done was believed to be small; moreover, the recent amalgamation of the three branches of the Survey Department rendered it desirable that this party, which originally belonged to the Trigonometrical Branch, should have an opportunity of acquiring practical experience in large-scale surveys of lands and boundaries which had hitherto been the special province of the Surveyors in the Revenue Branch of the Department.
135. The general programme of the operations in the Darjeeling District and the details of the operations completed up to the end of 1878-79, are given in paragraphs 236 to 239 of the report for last year. In July 1879 it was belicred that so little work remained to be done within the limits of the District itself that the surver of Sikkim might be commenced in the following field season. Arrangements were made accordingly, and early in October Lieutenant Harman started for Northern Sikkim and sent Mr. Robert into Western Sikkim, leaving the remaining surveyors, European and Native, to complete the field work in the Darjeeling District.
130. The result has been unfortunate in various respects. Little more than a month had elapsed after his departure from Darjeeling, when Licutenant Harman was so badly frost-litten at the Donkia Poss, on the frontier of Thibet, that he lost eventually four and a half of his toes, and had to return, leaving his work in Sikkim incomplete. Moreover, as regards the work to be done in the Darjeeling District, not only was it found to be much more laborious and extensive than Lieutenant Ifarman had supposed in July, but it was materially

[^23]added to afterwards, because the local officers in all departments and the tenplanters, finding a survey party available on the spot, applied for its services on every occasion when surveyors were wanted to relay old boundaries or demarcate new ones, or to perform any of the varicd duties which they are liable to be called on to undertake. Under the circumstances, Lieutenant Harman's absence in Sikkim, though only for half the field season, is to be regretted, as his presence on the spot and direct supervision were required to enable the District work to be completed, and the survey party transferred to other duties as speedily as had been desired by the Government of Bengal.
137. The operations in the Darjeeling District having already formed the subject of special reports to the Government of India, it is unnecessary to say more here than that the survegors have been very fully occupied and a large amount of work has been performed, in the station of Darjeeling, in the Hope Town estates, in the Government Khas lands, in the lands east of the Teesta River which are required for tea cultivation, in the tracts which are reserved for native cultivation in the hills of the Daling Sub-Division, and on a number of boundary lines of which the longest and most important is the boundary between the Darjeeling and the Jalpaiguri Districts. The blocks of land newly taken up for cinchona plantations in Sittong have been surveyed. The congregation of the 16 -inch settlement survey maps of the jotes in the Terai on the 4 -inch scale into a frame-work of triangulation and traverses specially constructed for the purpose by the professional survey, is well advanced; and much data have been collected for the preparation of a new edition of the general map of the District, on the 2 -inch scale, corrected up to date.
138. For the survey of Sikkim, Lieutenant Harman had arranged to undertake in person the whole of the country lying to the east of the range running south-east from Kanchinjinga, and assigned the country to the west to Mr. Robert. He proceeded in the first instance, to the snowy ranges on the frontier between Sikkim and Tibet hoping to survey them during the brief interval between the cessation of the rains and the setting-in of the winter with its heavy snow-falls. Going up the main valley to the point of junction of the Lasing and the Lachung Rivers, he ascended the Lachung Valley and reached the Donkia Pass on the boundary. Here his feet were badly frost-litten as already stated; but with most commendable persistence and energy, he bravely continued his work under great difficulties, going about as best he could, on coolies, or ponies, or crutches. On returning to the junction of the two rivers he ascended the Lasing Valley and reached the Kangra Lama Pass, also on the boundary. He subsequently ascended the summits of Kinyong, Nochego and other mountains, and penetrated into parts of Sikkim which no European had before visited. He was in Sikkim for about $3 \frac{1}{2}$ months, during which he surveyed an arca of over 1,000 square miles on the scale of $\frac{1}{4}$ inch to the mile, determined the heights of about 300 positions of more or less importance by barometric and boiling-point observations, and executed a large amount of triangulation.
139. Mr. Robert succeeded in making a survey on the $\frac{1}{2}$-inch scale of an area of about 600 square miles in Western Sikkim, including the line of boundary with Nepal. From the numerous commanding points on this mountain frontier line he could see most of that part of Nepal which lies to the east of the southern spurs of Mount Everest, and was able to sketch an area of about 900 square miles, besides fixing a large number of points on the surrounding hill ranges and in Sikkim. Licutenant Harman finds that Dr. Hooker's work in Nepal will combine well with Mr. Robert's, which is very satisfactory.*

[^24]
GEOGRAPHICAL.

XXIV.-GJOGRAPHICAL OPERATIONS IN AFGHANISTAN AND BELUCHISTAN.

140. The Officers who had operated with the army in Northern Afghanistan, during the first year of the war, were withdrawn from the field when the army retired on the conclusion of the Treaty of Gundamak, and were occupied in bringing up their calculations and completing their maps at the Mussoorie Head-Quarters, when intelligence was received in September 1879 that an army would at once be sent to Kabul in consequence of the massacre of the British Embassy. Immediate measures were, therefore, taken to organize two field parties, one under Major R. G. Woodthorpe, R.E., to proceed via Kuram and the Shutargardan to join the column under Gencral Sir F. Roberts; the other under Captain Holdich, R.E., to proceed via Peshawar and Jellalabad to join the column under General Bright. The formation of these two parties was deemed expedient so as to secure as much topography as possible along the two lines of advance. Eventually both parties met at Kabul, where they were employed in making the most of every opportunity which was presented by the movements of the forces to add as much as possible to the geography of the surrounding country; in continuation of the preceding surveys, they operated westwards and southwards, up to the Pughman Range and over almost all the country which is drained by the Logar, Shiniz, and other affluents of the Kabul River.
141. Some additional geography was obtained in Southern Afghanistan, between Kandahar and Girishk, and along the valleys to the west and north-west of Kandahar. A connection with the operations in Northern Afghanistan was also made by the survey of the route from Kandahar to Ghazni, through the Khushk-i-rud, Tarnak and Ghazni Valleys. In Beluchistan a rough reconnaissance was made of a consideralle portion of the country north of Sibi inhabited by the Marri tribes, and detailed surveys were commenced in the plains around Sibi and Dadur.
142. These operations will now be described in the following order: 1st, Northern Afghanistan; 2nd, Southern A fglanistan ; and, 3rd, Beluchistan; to be followed by, 4th, a report on the general organization of surrey operations with on army in the field.

1.-Tie Operations in Northern Afghanistan.

143. On the re-occupation of Gundamak, in Novenber 1879, by the advanced brigade of General Bright's division under Brigadier General C. Gough, the survey party under Captain Holdich, R.E., joined the brigade. Captain C. Strahan, R.E., had previously executed a triangulation in the Jellalabad Valley and

Captain T. H. Holdich, R.E., Officiating Deputy Superintendent 3 rd grade.
Mr T, E. M. Clandius, Surveror 4th prode.
W. W. MeNuir, Assintant Surveyor let grade. T'wo sub-sursegore (The Munshi and Dozdar). beyond as far as Gundamak, and had fixed points on the Karkacha Range to the west, which were of much use in extending the topograplyy into the plains of Kabul. Additional triangulation was required to connect the operations in this quarter with those of Major Woodthorpe in the Kuram Valley and around the Shuturgardan lass, and to complete the general system of triangulation in Northern Afghanistan. This was effected in due course as opportunities offered on the advance of the troops.
144. Major R. G. Woodthorpe's party, which lad procceded viá the Kuram Valley, reached Ali-Khoyl on the 4th October, a few days after the force under Gencral Sir F. Roberts had advanced on Kabul. Here it was detained until nearly the end of October, when General Hugh Gough arrived at the Shuturgardan Pass with orders to withdraw he gar-

Capain (lirevet Najrr) R. G. Whodthorpe, R.E., A-ansant Suprimendent, 2 nid grade.
Cuphim (i. W. Murtin, asaistant Superintendent, 3rd

Mr. M. I. Of.l, Gurveror.
Sul-swicgor Hira Silirl. risons from the posts there and at Ali-Kheyl, and take them on to Kaluol. A day's halt at the shuturgardan enabled Major Woodthorpe to ascend a hill in the seighbourhood from which a good view was obtained, cuabling much work

to be done, both with the theodolite and plane-table, but for which Major Woodthorpe would not have been able to connect the triangulation of the Kuram Valley with that of the Logar and Kabul Valleys, which now together form a continuous series from Thull round via Kabul to Jellalabad.
14.5. At first, however, litllo could be done in the way of triangulation, and it was found necessary to base the topography on a traverse with a subtense theodolite from the Shuturgardan Pass viá Kushi to Kabul, and even this was executed with considerable difficully, owing to the length of the marehes with the troops. Points determined by this traverse were every night plotted on a plane-table, and, with the aid of these, Captain Martin was enabled to make a fairly accurate preliminary reconnaissance of most of the Logar Valley on the scale of 1 inch to 4 miles.
146. The party arrived at Kabul on the 4th November 1879, and Captain T. H. Holdich, R.E., as the senior departmental officer, assumed charge of all further survey operations in Northern Afghanistan.
147. Mr. Ogle, of Major Woodthorpe's party, was detained in the Kuram Valley and accompanied General Tytler's column into the Zaimukht country, west of Kohat, where he secured topography to the extent of 880 square miles in country which was very little known. On completion of this work he proceeded to Kabul and took part in the survey under Captain Holdich.
148. On the occupation of Kabul and partial investnent of Sherpur by Mahomed Jan's forces in December, the officers of fhe survey were temporarily transferred to the Field Engineer Department, and either assisted in the construction of defensive works, under Colonel Perkins, the Chief Engineer, or were placed on the personal staff of the Brigadiers and Generals Commanding. After the defeat of Mahomed Jan, Captain Holdich and Major Woodthorpe accompanied a brigade to the Koh Daman and succeeded in mapping a portion of the country on the $\frac{1}{4}$-inch scale and establishing two trigonometrical stations there.
149. Captain Holdich then joined General Bright's division in the Lughman Valley. Afterwards he accompanied General Sir F. Roberts on his march through the Logar Valley, taking advantage of this opportunity to make a leisurely re-survey of the valley on the $\frac{1}{2}$-inch scale. Major Woodthorpe at the same time considerably improved and extended the triangulation in this valley and fixed a number of points on the Altimor, Pughman, Deh-i-Sabz, and Karkatcha Ranges.
150. In April General Ross proceeded with a division through Maidan towards Ghazni to meet Sir Donald Stewart, then advancing from Kandahar. Major Woodthorpe accompanied this force, and was able to extend the triangulation and topography towards the head of the Logar River, the sources of which Le states, have now been approximately fixed. IIe also ascended two points on the Pughman Range at elevations of 14,400 and 15,000 feet; but, unfortuuately, the weather at this time had become hazy and he was unable to take observations to the distant peaks on the Hindu-Kush.
151. In June and July Captain Martio accompanied General C. Gough's brigade into the Koh-i-1aman and Kohistan, where he mapped 700 square miles on the $\frac{1}{2}$-inch scale and was successful in obtaining information regarding the courses of some of the rivers issuing from the Hindu-Kush and flowing through the Kabul Valley.
152. Mr. Claudius completed the topography of the country from Gundamak to Kabul on the $\frac{1}{2}$-inch scale, and under the escort and guidance of a friendly Khan of 'lezin he mapped the important bit of country which borders tho route across Lataband and the 以aft-kotal Passes. This part of his work was executed at considerable personal risk, and he was badly frost-bitten in carrying it through.
153. Mr. W. W. McNair completed the survey of portions of the Asphan and Hisarak Valleys, west of Gundamak and of the Lughman Valley, both on the 1 -inch scale, and subsequently he executed a large amount of excellent topograply in the Logar Valley, on the $\frac{1}{2}$-inch scale.
154. In April two officers of the Royal Engineers, Lieutenant the Honourable M. G. Talbot and Licutenant F. B. Longe, were attached to the Survey for duty, and did excellent work both as plane-tablers and in taking a share in the calculations for the gencral reduction of the observations.
155. The Native Sub-Surveyors were found particularly useful throughout the campaign from the fact of their being able to move about the country without much personal risk, even in disturbed portions of the country; their services were also largely utilised in pushing forward the Military Survey of the country around Kabul and Sherpur on the 4 -inch scale.*
156. The total area mapped in Northern 1 frhanistan during the season is roughly estimated by Captain Holdich at 10,300 square miles; to which should be added 880 square miles in the Zaimukht country, -making in all 11,180 square miles, of which 64, square miles were done on the 4 -inch scale, 1,276 on the 1 -inch, and the remainder on the $\frac{1}{2}$-inch and $\frac{1}{4}$-inch scales, in about equal proportions.

Notes by Captain Holdich on " the route to Kabul through the Lughman Valley," and an extract from Major Woodthorpe's report regarding the triangulation from the Shuturgardan Pass to Kabul, are given in the appendix attached to this report.

2.-Tee Operations in Sodtilern Afgeinistan.

157. On completing the survey of Pishin which is mentioned in paragraph

Parsonnel.

Lientennest. G. C. Gorc, R.E., Asslatant Superintencent, 3rd grade.
Sub-surveyors Atma Sing nud Snid. ulla Khan. 251 of the last report, Lieutenant Gore, R.E., received instructions from Lieutenant General Sir D. Stewart, K.C.B., to proceed to Kandahar viá the Barghana route, which had not been previously surveyed. Accordingly he made a sketch of the route and the surrounding country, and amalgamated it with the previous surveys on the more direct routes to Kandahar. On arrival at Kandahar he was employed in making surveys of the surrounding country, including an area of 160 square miles in the fertile and well-cultivated country along the banks of the Argandab and Dori Rivers to their junction, which he mapped on the 1 -inch scale. He also extended the triangulation to wards Giriskh.
158. Subsequently he accompained an expedition into the Argastan Valley which proceeded as far as the village of Badozai, about 8 miles between the point where the river issues from the hills; the Sundarzai villages were also visited, and the Tagak Kotal, through which an excellent road passes into the Tarnak Vallcy, was explored. This road was afterwards used by the 1st Brigade of the Ghazni column on their march towards Kabul. Lieutenant Gore states that
"of the three rivers forming the Argastan basin the Kushlk-i-Rud is the smallest; its total length is about 50 miles. A fair body of water, however, comes down it, hut it is very brackish and masty to drink. Of the remaining two the Argastan has probally the larger basin, as a gool deal of the drainge, which on olli maps was shown as running into the Kadanai is now known to flow into the Argastan. The Lora liver is said to take the overflow drainage of Lake Ab-i-Istada, and when the lake overflows the river water comes down very salt."
159. From Badozai the expedition turned to the south and marched skirting the main range of hills through the Kadanai plain until it reached Dabrai on the road from Quetta to Kandahar; a good reconunissance of all this country was made and was based on trigonometrically fixed points. Subsequently, when General Stewart's force adranced from Kandahar on Kabul, via Ghazni, Lieutenant Gore accompanied it aud was attached to the 1st Brigade, which commenced its march on the 30 th March. The route taken led for two days up tho Tarnak Valley, thence across the Tagak Pass, on the water-shed between the Taruak and Argaistan Rivers into the Khushk-i-Rud Valley, at the head of which it erossed an almost impereeptible water-shed and re-entered the Tarnak Valley, opposite to, but about 10 miles to the east of, Kalat-i-Ghilzai. From

[^25]this point onwards the route followed the foot of the Surgarh hills, which form the eastern flank of the Tarnak Valley, up to within a short distance of Slaahjui, in latitude $32^{\circ} 31^{\prime}$, where the 1st Brigade joined the main body of the ariny. The whole force then advanced into the valley of the Ghazni River, fought the battle of Ahmed-Khel on the 19th April and reached Ghazni two days afterwards.
160. Up to Shahjui Licutenant Gore's work was based on trigonometrically fixed points, but beyond he had to rely on plane-table fixings and traversing until he reached the Wardak Valley above Ghazni and was able to effect a junction with the survey brought down by Major Woodthorpe from Kabul. While halting at Ghazni Lieutenant Gore made a large-scale sketch of the ground in the vicinity of the city, in which he was assisted by several officers of the force. He accompanied a small force sent to recomnoitre the Altamur Pass, and had hoped to reach the summit of the l'ass and obtain a good view of the Zurmut Valley beyond, but this was found impracticable, as the hills were occupied in considerable force by the enemy. On reaching Kabul Lieutenant Gore was permitted by Sir Donald Stewart to return to India in order to complete his mapping.
161. Major E. P. Lcach, V.C., had proceeded to Europe on sick leave in conesquence of a wound reccived during the first campaign. On lis return he was sent to Kandahar to be available-in communication with Colonel St. John, R.E., the Political Officer-for any survey work which might be wanted. Few opportunities were presented for survey operations, but Major Leach succeeded in recomoiteriag a portion of the Argandab Valley, and in extending the previous year's survey of the Khakrez Valley eastwards for some distance; he also fixed a number of the peaks on the water-shed between the Argandab and the upper waters of the 'lirin Valley, and obtained some valuable information concerning the passes into and across the Hazara country. Unfortuantely"The whole of this material, together with a serics of valuable notes concerning the Hazara tribes and enuntry, was lost during the retreat from Maiwand and during the sulsequent evacuatiou of the Kandalar cantonment."
The survey portion has, however, since been replaced during au exploration made by Lieutenant the Howourable M. G. Talbot, R.E., and Lieutenant F. B. Longe, R.E., and Major Leach has drarrn up from recollection and some brief notes which he had saved, a résumé of the information which he had collected of the Hazara country and people, and has embodied the results on a sketch map which, he says,
"is so far valuable that it gives an idea of the general lie of a country which is at present a perfect blank and the relative positions infer se of the more important tribal divisions."
162. At the beginning of June, Major Leach sketched a portion of the Maiwand District, which lies at the font of the Shah Maksúd Range and is intermediate between the Garmao and Khakrez Valless, in contiuuation of tho previous survey of the Khakrez Valley. Ife subsequently accompanied General Burrows' force to Girisink and did good service on the staff during the disastrous battlo of Maiwand and retreat to Kandahar. He was then appointed Brigade Major of Enginecrs and served in that capacity throughout the defence of Kandahar and in the subsequent battle of Kandahar, when the enemy under Ayüb Khan were defeatel by the British troops under General Sir R. Roberts. For sonne time after these events further survey operations at a distance from Kandahar were impracticable; meanwhile a survey of the city and its entirons was commenced on the scale of 6 inches to the mile.

16:3. Lientenant the ILonourable M. G. 'Ialbot, R.E., and Licutenant Longe, R.E., acompanied General Sir F. Roberts in his memorable march from Kiluul to Kandahar; they were present at the battle of Kandahar, and have since been employed in such survey operations as the movements of the troops enabled thein to undertake.

3.-The Orerations in Beluciistan.

161. In September 1879, as there was no immediate prospect of more

Personnel.

Mnjor R. Binvan, S.C., Assistant Superintendent. Mr. J. T'. U. Coxelu, Assiitint Surangr lat grade. "H. Corkerg „ " 3r山 ,
survey being undertaken iu Southern Aghanistan, Major Berwan was directel to proceed from Kandahar to Quetta to survey the country between and arouad

Quetta and Sibi as opportunities offered. On arrival at Quetta he found that an expedition was about to start under the Political Officer, Captain Showers, to explore the route to Sibi, via the Цamra Pass. Furnished with the approximate positions of several prominent peaks which had been fixed by previous triangulation, he procecded viá Astangi through the Tiri defile to Sangan, whence he accompanied Sir 12. Sandeman to Sibi vid Harnai, leaving Captain Showers to explore the country to the north for a direct road to Sharigh and Dargi.
165. While at Harnai he was able to visit the hill of Torgarh, about six miles to the south, from which a good view was obtaincd of all the country towards Sangan and Nari.

Afterwards le weat to Khost in the Dargi Valley, where he met Sir R. Temple, Governor of Bombay, and accompanied him to Thal, from which place he subsequently accompanied military expeditions towards Chotiali and to Baghao and Smalan on the north-east.
166. Major Beavan had considerable difficulties to contend against, as the disturbed state of the country prevented him from deviating to any distance from the routes followed by the troops; but he succeeded in making a rough reconnaissance, on the scale of 1 inch $=4$ miles, of about 2,500 square miles between the parallels of $29^{\circ} 15^{\prime}$ and $30^{\circ} 20^{\prime}$ and the meridians of $67^{\circ} 10^{\prime}$ and $68^{\circ} 50^{\prime}$ extending from Quetta to Thal-Chotiali and down to Sibi, which was of much use afterwards to the engineers employed in laying out the new line of railway. He also completed some triangulation near Sibi and Didur.
167. The assistant surveyors (Messrs. Coxen and Corkery*) completed a survey of 1,500 square miles around Sibi, Mitri and Dadur, in detail, on the scale of 1 inch $=2$ miles.
168. Major Beavan proceeded in April to the Head-Quarters at Mussoorie, with his field maps and original records and observations, with a view to completing the calculations and preparing the fair maps. This work done, he returned to Sibi in July, to resume field operations whenever and wherever it might be found practicable to operate in the hill tracts of Beluchistan lying on the northern frontier of the Province of Sind.

4.-On the general organization of Survey Operations with an Army in the Field.

169. In the General Report for last year, a special report on the experience gained regarding the sufficiency of the general organization of the survey operations during the campaign in Afghanistan was made, under the instructions from the Secretary of State for India prescribing that all experience on the work and organization of the several departments engaged, directly or indirectly, on the conduct of the campaign, should be reported on and recorded for future guidance.
170. During the present year a committee was assembled at Kabul, under the orders of General Sir Donald Stewart, G.C.B., for the purpose of considering the equipment necessary for a survey party in the field. The committee was composed of Lieutenant Colonel Stewart, of the Guide Corps, as president, and Major Woodthorpe and Captain Holdich, of the Survey Department, as members. Their recommendations were as follows :-
171. A survey party should cousist of one olfieer (who should be both accustomed to triangulate and to use the plane-table) and of two assistants (one of whom should he competent to triangulate) as topographers for ench column operating on an independent live in a country where no survey has hitherto been made.

The native establishment for a party of this size should be as follows :-

$$
\left.\begin{array}{c}
\text { For } 1 \text { officer } 7 \text { followers } \\
\text { " } 2 \text { officers } 10
\end{array}\right\} \text { inclusive of interpreters and permanent guides. }
$$

The addition of native sub-surgeyors must depend entirely on the nature of the country under survey, but when they are employed, extra public followers, at the rate of at least one per sub-surveyor, will be necessary.

[^26]2. The instruments for the equipment of such a party will be as Collows:-

1 six-inch subtense theodolite with full vertieal circle and tripod stand.
5 plane-tables, viz, one for the officer in charge and two for each assistant.
The two for each assistant should be interchangeable on one stand and should be of diferent sizes and nortability. The committee are of opinion that the plain deal table, $30^{\prime \prime} \times 26^{\prime \prime}$, has, on the whole, been found to be of the greatest use on account of its superior size and stability. It can be slang with its stand on a mule or pony withont difficulty and can be used with cavalry. But each assistant should also be provided with a lighter, smaller, and more porlable table, which can be conveniently slung on a man's back; a really portable table of this sort has yet to be devised, as also the best kind of stand.

Each officer' or assistant should also be provided with the following minor instruments and books, viz.: 一
2 trough needles, 1 sight-rule, 1 telescope or binocular, 1 aneroid barometer, 1 prismatic com-
pass and stand, 3 thermometers for determining the boiling point of water, ordinary air
thermometer, 1 Gunter scale, 1 beam compass, 1 small box instruments, 1 Shortrede's log
tables, 1 Chambers's log tables, 1 auxiliary tables for facilitating the computations of the Great Trigonometrical Survey.
The Officer in charge should carry in addition-
1 Abney's level, 1 set seales, 1 maximum and minimum thermometer, 1 nautical almanac, 1 prismatic subtense instrument, 1 parallel ruler, 1 pautagrapla, 1 manual of surveying,
2 sets measuring tapes (steel), l perambulator, lamps for observing, l-6" helietrope, 1 chronometer wateh, l portable sun-dial, spare compass and drawing pens.
3. Stationery. -The ordinary forms in use should be indented for before starting, in quantities suited to the nature of the work likely to be undertaken, but not more than three months' supply either of forms or stationery need ever be carried.
4. Office tentage and baggrage allowance should be on the same scale as that of the senior Quarter Master General with the division.
5. In addition to the usual persoual baggrage scale, the following will be reguired for the Head-Quarters camp-

For public followers 1 sepoy's pal, holding 17 persons, or its equivalent in smaller tents.
171. These recommendations were made on the following assumptions regarding the nature and extent of the work to be undertaken by the Survey officers :-
A.-That a large extent of country, embracing several thousand square miles, may be either actually visited or sketched from a distance, during the course of a campaign.
B.-That every surveyor should be equipped to act independently, if necessary.
C. What there may be no opportunities of visiting any portion of the ground twice, and therefore that all surveying must be done pari passu with the more or less rapid movements of troops along the main lines of communication.
D.- That maps are to be compiled and traced in the field, so that all the work of the Survey can be put into the hands of the Generals concerned as speedily as possihle.
E.-That the topographical operations are not to consist merely of surveys of the lines of route, but are to embrace as much as possible of the surrounding country, and must therefore be executed on a trigonometrical basis; consequently, that the surveyors must always work together in pairs, one doing the triangulation, the other the topugraphical sketching ; for, when the tronps are marching rapidly, it is impossible for any single man to do both, and each is required to supplement the other:
F.-That the Surrey office with the Army will he the general depot for all maps of the country which may be published by the Surveyor Geveral's Department aud be supplied for distribution as required.
G.-That the sanctioned allowance of baggage and equipment for every officer in the field who is employed in transport, commissariat or any other duties which oblige him to carry his own camp equipage and make it impossible for him to join a mess, is 400 lbs .
172. The recommendations were obviously much influenced by the circumstance that the military occupation of Afghanistan was long protracted, so that the whole of the equipment specified by the committee had been found to be necessary. It will be obvious, however, that much valuable work of military survey and reconnaissance may be done by officers who are equipped more lightly, with instruments fewer in number and of a smaller size; and iudeed that when a foree has to march with great rapidity through an enemy's country, as it Gencmal Sir F. Roberts's mareh from Kabul to Kandahar, it would be absolutely necessary to restrict the equipment of each Survey officer to what might be readily carried about by himself and one or two attendints.
173. It will be obvious that the nature of the equipment must be materially influenced by the nature of the duty which the officer has to perform, that is to say, by the consideration whether he is expected to make a general geographical survey of as much as can be seen of the country, or a dotailed topographical survey of the principal military roads and lines of communication and the ground in their immediate ncighbourhood. Both surveys may be invaluable to the officers commanding the forces, but it is scarcely possible for both to be performed satisfactorily by the same individuals and the same processes of operation. The gencral geographical survey of the country is not required to give much minute detail, but it must be conducted with some precision in order that what it does give may be accurate; on the other hand, the topographical sketches and reconnaissances are required to give full details of the configuration of the ground on both sides of the principal military lines of communication, and more particularly to show all the hills by which the roads are commanded; for them, however, fullness of detail is of infinitely greater importance than precision of execution. The geographical survey is mostly of ralue for rapid strategical movements over a large area of country, while the topographical is mostly of value to aid a general officer in determining the best disposition of his troops in action or whereser liable to be attacked by an enemy. The geographical survey must, necessarily, be made on a much smaller scale than the military topographical sketches, and it would be of very little use wherever minute detail is required; but, on the other hand, the topographical sketches would by no means suffice of themselves for the construction of a reasonably accurate map of the country.
174. In the first Afghon War a large amount of route surveying ras executed : it was mostly done on the scale of 1 inch $=1$ mile, and some of it appears to have been of very good quality; but few, if any, attempts were made to carry on a general geograplical survey of the country pari passu with the military route surreys. Thus, when the latter came to be combined together, large gaps were found to exist in our knowledge of the country ; sufficient data were not even forthcoming for an accurate combination of the work which had been done, the result being that in the maps of Afghanistan, which were executed on the basis of the route surveys, the cities of Kabul and Kandahar are shown respectively as 7 and 15 miles west of their true positions relatively to places in the same parallels of latitude on the British frontier.
175. It was the chief duty of the Officers of the Survey Department who serred in the last Afghan War to endeavour to obtain as much information as possible of the country at large, and not mevely to operate on the military lines of communication. For this purpose they were directed to make general maps of the countre-om scales of $\frac{1}{2}$ an inch or $\frac{1}{4}$ of an inch to the mile, as might be most suitable in each case-by the method of plane-tabling on a trigonometrical basis; also to carry route survers, on the 1 -inch scale, with the most suitable instruments arailalile, over the principal roads traversed by the troops. They were, of course, expected to make themselves generally useful whenever occasions might arise for their employment on ot her duties; but it was contemplated that whatever mork of military reconnaissance and sketching on scales larger than that of 1 -inch to the mile night he required, would be done by some of the numerous field engineers and staff officers attached to the army, who were nore or less skilled in the performance of such duties. Thus, it has resulted that the bulk of their work is on the $\frac{1}{4}$ and $\frac{1}{2}$-inch scales; their route-surveying on the 1 -inch scale became gencrally merged into their smaller scale maps; they surveyed Kandahar aud the surrounding country within a radius of ten miles on the 1 -inch seale, and Kaboul and its environs on the 4-inch scale; but the bulk of the work of military reconnaissance was done chiefly on the 6 -incll seale, ly field engineers and stafl officers who were attached to the several divisions of the army; regimental officers were also largely employed in making tield sketches and reports.
176. The Surveyor General is of opinion that this separation of the work of precise military survey from that of approximate military recomnaissance, the former being alloted to the professional military surveyor, the latter to the staff officer or field engineer, is a judicious arrangement which deserves official recognition and should be laid down as a rule for future guidance. It was found to work well on the whole during the late campaign, though it was not formally introduced, but merely came to be adopted in course of time as the
most appropriate way of employing the several officers whose services were arailable for the various kinds of work to be performerl. Had the prineiple been gencrally adopted from the outset, even better results might have been obtained, and there are many excellent reasons for its adoption in future campaigns in India. The survey of a large extent of country, more particularly during hurried movements of troops, is one which is obviously more likely to be performed satisfactorily by a military officer who had been constantly practising the duties of a professiomal surveyor, thon by a fied engineer or staff officer, who has been as constantly employed on other duties. On the other hand, in the work of military recomaissance, the professional surveror may, from want of military training, be often at a disadranture as compared with the staff officer, and may not succeed as well in obtaining local information on various points affecting the movements of the troops, which is usually of great value to a general officer, and may even be of more importance than the topographical sketeles; this work should, thercfore, be performed whenever possible by staff or regimental officers, rather than professional surveyors. Such division of labour has the further adrantage of employing each oflicer on that work in the success of which he is most immediately interested.
177. The recent publication of the seport of the Committee appointed by the Scerctary of State for War to report on the System of Instruction for Military Sketching and Surveying, in the British Army, affords the Surveyor General an opportunity of offering suggestions on the recommendations of the Committee on two points of importance which may well receive further consideration. First, the "re-introduction of the plane-table in its simplest form" as an instrument of survey ; and, secondly, the "sulstitution of thesystem of showing hill features by slading in mezzotint, with stump and powdered chalk, or lead from a pencil, for the one now in force of indicating them by horizontal hachures."
178. The Committee recommend the re-introduction of the plane-table on the following grounds: that it is " the principal instrument used in India for surveying ;" that it "can be now made as light as the sketching case, which every man working with a prismatic compass usually carries;" and that it may be employed in countries, such as Southern Africa, "where the prismatic compass was very unreliable, and in some cases almost useless, owing to the powerful lical attraction in the ground." Now, it is impossible that plane-tables of the same forru and design can be made to subserve the two conditions of portability and independency of the magnctic compass. This may be readily inferred from the following description of the plane-table which is used in the Indian Survey Department.
179. The plane-table is ordinarily 30 inches long by 24 broad and $\frac{3}{4}$ of an inch thick, and is made of the lightest wood procurable, well seasoned and not liable to warp to an extent that will sensibly distort the plane of the table. It is usually supplied with a strong and well-hraced tripod stand, on which it can be set up and clamped very firmly; folding tripods with tightening screws are also used occasionally and are about two-thirds of the weight, 12 lbs., of the braced tripol. The plane-table is also supplied with an elony sight-rule, which is usually about 27 inches in length by 2 inches in breadth, and carries brass sight vanes about 4 inches high at each end, by means of which the rule can be truly directed on any surrounding olject. The lower surface of the rule and the upper surface of the table being loth truly planed-so that the rule will rest evculy on all parts of the table over which it may be brought-the two together constitute a surveying instrument which may be employed independently of any instrument for mensuring angles, such as a theodolite, sextant, or magnetic compass, providel that the table when set up is turmly clamped to its stand, and is not lible to be thrown out of position by the lightness or weakness of its supports. But if the plane-table is to take the place of all other instruments, and be employed in localities where local magnetic attraction reuders the prismatic compass uscless, it must be true in surlace and free from shake: thus, it cannot be made matcrially lighter than the ordinary Indian plane-table, which weighs about 25 lbs . with stand and sight-rule complete, and cannot well be carried about by less than two persons, and is certainly a very awkward instrument to take about on horseback.
180. It would appear, therefore, that the officers who have reported to the

Committee in commendation of the plane-table on the grounds that "the table itself can be now made as light as the sketching case which every man working with a prismatic compass usually carries; and the legs, which are separate, can be made so as not to be much more inconvenient to carry than a large stick," must have been thinking, not of a plane-table forming it complete survey instrument in itself as above described, but of one requiring to be used in combination with a magnetic needle to govern the setting-up of the table, and, therefore, as uscless as the prismatic compass would be in localities influenced by local attraction. Still, such an instrument would be very serviceable in furnishing a small table, on which the topographer can work in much greater comfort and ease, and therefore with greater rapidity, than on the ordinary sketching block.
181. The magnetic needle is usually of so great assistance in enabling a plaue-table to be speedily adjusted to the true meridian that a long trough needle is invariably supplied to every plane-tabler on the Iudian Survey; the table is first brought into position with the aid of the needle, and finally adjusted by the sight-rule on surrounding fixed oljects, as the magnetic position cannot be relied on, But firmness and truencss of table, and accuracy of sight. rule, are essentially necessary to obtain good results when the plane-table is employed, as usual, independently of all other angle-measuring instruments, after once it has been brought into position.
182. On the other hand, a much smaller table than the Indian plane-table, mounted on a folding tripod stand, such as is usually supplied for the support of a prismatic compass, may be used in combiuation with a small theodolite, with cotire satisfaction as regards accuracy of results, though with somewhat more of labour than in the case of the plane-talle pure and simple; for the angles must be measured with the theodolite and laid off with a protractor. But the operations would be independent of the magnetic needle, and unaffected by any accidental displacement of the table. Probably the best and most convenient of theodolites to employ for extended operations in which more or less precision is necessary would be Casclla's little altazimuths, with 3 -inch horizontal and vertical circles divided to read minutes, telescopic power $5 \frac{1}{2}$, weight in box $4 \frac{1}{2}$ lbs., weight of stand $3 \frac{1}{2}$ lbs. For ordinary topographical reconnaissance it would suffice to employ a prismatic compass, which might be rested on the table itself; then the extra weight to be carried about, as compared with that of a hand-held prismatic compass and sketching black, would be merely the excess of the weight of the table orer that of the block, plus the weight of the folding tripod stand, all which need not be more than 5 lls .
183. The question of the propriety of employing the plane-table, pure and simple, is much influenced by the seale on which the survey or recomnaissance is to be made. The instrument is specially valuable for determining the positions of all surrounding points which are visible at two or more fixed stations, or for determining the position of a station at which the table is sot up, by interpolation from surrounding points which have already been fixed by triangulation. The plane-tabling in Northern Afghanistan was at the outset catirely based on points which had been fixed on the summits of the great mountain ranges in previous years, by observations from the frontier stations of the Indian triangulation, and of which the positions are given in Synoptical Volume I of the results of the operations of the Great Trigonometrical Survey of India. Many of these points were 30 to 60 miles distant from the planc-tahler: thus, as the size of the tables was 30 by 24 inches, a larger seale than $\frac{1}{t}$ of an inch to the mile could not be used without discarding several of the more distant points, which might often be of much service to the plane-tabler in interpolating his position.
184. The scales recommended by the War Office Committec are 1 to 2 inches to the mile for roads and rivers, and 6 inches for positions and caups. The largest of these seales was adopted in Afghanistan for the Kuram Valley aud the road from thence to Kabul cia the Shutargardan Pass, for the road through the passes between Kabul and Jellialabad, and for the Kliyler Pass. Obviously, where so large a scale is used, the work must neerssarily be of the nature of reconuaissance rather than exact survey. When done on a sketeling block, a large number of sheets of paper must be used, and this is very troublesome at the time and afterwards in joining the shects together. For reconnaissance on
a large scale, regular plane-tabling is not suited, as a sufficiency of well-marked points for the plane-taller to work on would probably not fall within the limits of the paper. But when working with a small table and a prismatic compass, in the manner indicated in paragraph 182, paper mounted on cloth in sheets extending considerably beyond the limits of the table, may be used with advantage, with the aid of a few drawing brads to pin down the sheet on the board at the part which is wanted. This method was practised during the last three ycars of the 'Trans-Indus Survey of 1849-54, and was found most convenient; the paper, mounted on brown holland, was obtained in rolls a yard wide, from which any desired length, usually $1 \frac{1}{2}$ yards, might be cut; the table was only $\mathbf{1}$ foot square, and was mounted on the stind of a priswatic compass; the angles were measured with a 5 -inch theodolite, the smallest available at the time, and were plotted with a protractor and marguoise scales; the scale of the surrey was 1 inch to the mile; the paper was pinned down to the board with brads when in use, and rolled up and kept in a wax-cloth case when not in use. The whole of the instruments might be carried about by two persons, whether on foot or horseback, without difficulty. For ordinary military reconnaissance a roll of paper mounted on cloth, 12 to 18 inches wide and 24 to 30 inches long, would probably suffice, and a wax-cloth cover would be ample protection for it while being carried about; the corresponding instrumental equipment would be a light table, 10 to 12 inches square, mounted on a folding tripod stand; a prismatic compass, a protractor, and a scale with folding sights which might be used on occasion as a sight-rule.
185. As regards the substitution of shading in mezzotint for the present system of horizontal hachures, in order to show hill features, there can be no question but that maps so produced could be drawn with greater rapidity and would, as a rule, be clearer and better understood. When only a single copy of a sketch or map is wanted, nothing better can be desired. But if several copies are wanted as speedily as possible, as frequently happens, then the map sbould be drawn with a view to adapting it for the only process which is at present known for obtaining speedy reproduction and multiplication, viz., photographic transfer to stone or zinc. This process enables pen and ink drawing, however elaborate and complicated, to be reproduced and multiplied satisfactorily and with great rapidity; but it cannot reproduce mezzotint. Thus an original drawing in mezzotint must always be redrawn by hand, on transfer paper or stone, before it can be multiplied, and this is usually a slow and laborious process, requiring much more time thau direct reproduction by photography; consequently, all maps and sketches which are required to be speedily multiplied should be drawn in pen and ink. As regards reproduction it is immaterial whether the hachuring of the hill features is drawn vertically or horizontally; but for clearness and general legibility vertical hachures are usually preferable in small-scale maps, and horizontal in large-scale ones.
186. The speedy reproduction and multiplication by this Department of the maps and sketches which were received from Afghanistan, directly or through the Quarter Master Gencral's, the Foreign and other offices, constitutes a feature of much importance as regards the connection of the Survey Department with the general business of the campaign. Up to the end of 1880 over 400 maps and sketches, in sections of various sizes ranging from "double elephant" down to "foolscap," obtained from all quarters, were reproduced by photozincography; upwards of 50,000 prints were taken, giving an average of about 125 copies for each subject: the average time which elapsed between the receipt of an origival map or sketch in the photozincographic office and the issue of the requisite number of copies from that to the despateh office, was 5 days for each subject, including Sundays and holidays and the time spent in examining the proofs and correcting the zinc plates; ordinarily when the original was clearly drawn, so that the plates did not require correction, 200 copies could be supplied without much difficulty on the third day after its receipt in the photographic office; and in not a frw cascs copies were despatehed to the Generals and Stall OMficers in Afghanistan by the third day.
187. In some instances the prints were rough and coarse, but this was because the originals were in the same condition. Photozincography cannot do more than produce a facsimile of any subject; it cannot improve on, and
indeed is liable to produce something slightly less good than, the original. But a map, however rough and coarse, may, if supplied instanter, be often of far more value than an elaborately finished map supplied some time afterwards. Thus the general principle was followed, of furnishing the Government Offices, the Army Head Quarters and the Officers commandiug the troops in Afghanistan, with facsimiles of all maps and sketches precisely as received, so that the persons most interested might he placed as speedily as possille in possession of all the latest information available. New maps were compiler in the Surveyor General's Offices as soon as possible after any new intormation was received; and new editions of previous maps were published from time to time as rapidly as was practicable. But the labour of re-drawing and compiling was great; and a long period was consequently liable to elapse between the publication of the facsimiles of the primary materials, and the publication of the maps into which these materials were incorporated. Thus, the speedy publication of the originals was a desideratum of great importance, and the Survey Department may claim credit for the manner in which that want has been supplied.
188. It may be here stated that most of the maps supplied for the use of the officers in Afghanistan were printed on calico instead of paper. Prints on calico are nearly as sharp and clear as on the best paper; the cloth is lighter, more readily folded, much more convenient to carry about, and far less liable to be torn and injured, than any of the various kinds of paper on which mans are usually printed. On the other hand, they are not so well suited for the insertion of correction and additional matter. 'Thus, a few prints on paper were also furnished to supplement the prints on cloth.

XXV.-TRANS-FRONTIER EXPLORATIONS.

Irravaldy River Exptoration.
189. In the early part of 1879, Captain J. E. Sandeman, Deputy Superintendent, in charge of the Cadastral Survey in the Hanthawaddy District, British Burma, was requested, with the sanction of the Chief Commissioner, to train a native of Burma, with a view to his being employed in exploring the upper course of the Irrawaddy River, beyond Bamo. Towards the end of the year, this man had aequired a sufficient knowledge of his duties to be started on a preliminary exploration.
190. A full account of his journey and adventures will be found in Captain Sandeman's report in the appendix. Herc, therelore, it is unnecessary to say more than that he started by steamer from Rangoon with two companions of his own selection, and arrived at Bamo early in November 1879. Thence the party went up the river in boats, first to the village of Haw-ka in latitude $25^{\circ} 6^{\prime}$, and then to Ka-cho, once an important city, in latitude $25^{\circ} 20^{\prime}$ at an elevation of about 1,000 feet alove the sea. Thence he procected by land, pacing distances and taking bearings, up, to Mogoung-poon Maing-koung in Latitude $26^{\circ} 8^{\prime}$, at which place the exploration terminated.
191. At the village of Maingna, about 16 miles north of Ka-cho, the Burmese frontier was reached. The country beyond is inhabited by Kachins or Kausa-Kachins, among whom no Shans reside, and the people pay no tribute to Burma. Two days afterwards the village of Pouk-sin poon was reached, whence a view was oltained of the junction of the eastern and western branches of the Irrawaddy River, about 5 miles to the north-west. The western branch (called the Malee-kia) had previously been noticed to be considerably swollen and about 50 : paces wide, while the castern branch (called Meh-ka), which was now reached, was found to be low and flowing in a stream about 100 paces wide, down rapids and over large rocks. The pcople of the country stated that the great iucrease in the waters of the western branch was due to the melting of the snow at its sources, and there can be little doubt that the western branch is the larger of the two and rises in higher ranges.
192. Such information as could be oltained from the natives of the country was to the effect that the eastern branch has two principal afluents, one flowing from the east, which is believed to have its souree in the Naungsa. Lake, and the other from the north, which is suid to rise in the hills at six days'
journey from Mo-goung-poon, the days' journey being reckoned at eight to ten miles. Of the wrestern branch it was stated that its sources are in the "Kantee country," at a ‘distance of about 23 days' journey from Ka-cho. Thus it is higtly probable that this is the branch of the river reached by Wileox in his journey from Assam in 1827, which is described in Volume XVII of the Researches of the Asiatic Society of Bengal, Calcutta, 1832. The explorers' "Kantee" is obviously identical with Wilcox's "Khanti."
193. In the accompanying map of Some Sources of the River Irrawaddy above Bamo, the country lelow the parallel of $26^{\circ} 30^{\prime}$ is taken from a map by Captain Sandeman, which was compiled solely from the explorers' field books, and in which the adopted origin is the position of Bamo-latitude $24^{\circ} 10^{\prime}$, longitude $96^{\circ} 53^{\prime} 47^{\prime \prime}$-which was determined in 1868 by Captain Bowers and first employed in the map illustrating Dr. Anderson's report on the expedition to Western Yunan (Calcutta, 1871). The country north of the parallel of 27° is taken from Wilcox's map of his sturveys and routes in Upper Assam and Burwia during 1825 to 1828 . A portion of a smaller-scale map by Father Desgodins to illustrate a paper on the eastern frontier of Thibet, which he has recently presented to the Asiatic Society of Bengal, is also given for comparison. It will be seen that the information obtained from these three independent sources is fairly accordant, though greater exactitude is still a desideratum of importance for correct geography. The adopted longitude of Bamo, on which the lower portion of the map is based, is about 4 miles to the west of that cmployed by Colonel Yule in the map published in his "Narrative of the Mission to the Court of Ava in 1855," and 10 miles to the west of that assigned hy Wilcox iu 1828, not from actual survey but from such information of itineraries as was then available. The new value was detcrmined by Captain Bowers, of the mereantile Marine Service, when he visited Bamo as one of the members of the Yunan expedition; Dr. Anderson states that Captain Bowers had much previous expericuce in astronomical obserratious, was a very careful observer, and devoted many a night to the object of determining the positions of Bamo. Wilcox's longitucles in Assam, on which the upper portion of the map is based, have been very closely corroborated by recent operations of the Great Trigonometrical Survey; but Wilcox does not appear to have been able to take any observations for longitude when he reached the Irrawaddy River; thus his map of the country between Assam and the Irrawaddy rests on a route survey, which was excented under considemble difficulties and was checked only by observations for latitude. There may possibly be a little too much easting in the upper and too much westing in the lower portion of the accompanying map; but under existing circumstances it is preferable to show the results of each survey independently of the other, and to postpone any attempt to combine the two until a survey has been made of the as yet unknown course of the main branch of the Irrawaddy, between Wileox's Moong-Khanti and the explorers' junction of the Malee-ka and Meh-ka Rivers.

xXVI-SURVEIS AROUND GILGIT.

194. Colonel Tanner was returning to recess quarters to bring up his mapping and calculations of work done during the summer of 1890 , and had reached Lahore, when he was ordered back to Sirimagar and placed in command of a boly of troops in the service of the Maharajilh of Kashmir, under instructions to proceed to Gilgit for the relief of Major Biddulph, the Political Officer, whose safety had been imperilled by a general rising of the surrounding tribes with the avowed intention of subverting the authority of the Maharajah in those regions. This has prevented him from completing his mapping or doing more thian submit a bricf report of his survey operations. He has, however, intimated that, with the assistance of his natire Surveyor, Almed Ali, he made a surall-scale geographical surrey of an area of about 2,000 square miles during the last field scason, and that the limits of the Gilgit map-riow extended as far south-east as Astor, northwarls to the great range which separates little Gubjal from Gilgit, southwards to Chilas, and westwards to the mouth of the Wurshigrum River at the entrance to the Yasin Valley. Several of the spurs which run
down from the range west of the Khagan Valley to the Indus have been fixed, but the names of the valleys between them have not been ascertained. The positions of several far distant peaks on the Hindu-Kush range have been fixed, and among them the summit of the notable Tirich Mir mountain, first brought to notice by Major Biddulph, which lies to the north of Chitral, and rises to a height of between 24,000 and 25,000 feet as approximately deduced by Colonel Tanner from his preliminary calculations.

XXVII-THE TIDAL OPERA'TIONS.

195. These operations are progressing very satisfactorily, in accordance

Coptnin Δ. W. Ibsiral, R.E., Assistant Super-
intendent lst grade.
Mr. W. G. Beverley, Officinting Assistant aperintendent znd grade.
Mr. 'I. H. Rondell, Assistant Surveyor 1st Mr.

Dhondu Vinayek, Sub-Surveyor.
operation at cight ports,-viz., Paumben, Madras and Viza Paumben, Madras and Vizagapatam; these instruments have been in operation throughout the year now under review; similar instruments have also been set up and are now operating at six additional places,-viz., False Point, Rangoon, Elephant Point, Amherst, Moulmein and Port Blair ; self-registering anemometers and aneroid barometers and verificatory mercurial barometers have been erected at all the tidal stations with the exception of Kurrachee, Bombay and Madras, at the first of which they shortly will be erected, but not at the two last, where there are meteorological observatories from which all necessary information for the reduction of the tidal observations may be readily obtained.
196. At Aden the new tide-gauge of the standard pattern which was erected in March 1879, in place of the small one previously set up by the port authorities, has been working very satisfactorily, and there has been no iuterruption whatever in the registration of the tidal curves. The anemometer and aneroid barometer have also been working satisfactorily. Daily reports have been received in weekly batches by the mail steamers, and an inspection was made by Mr. Rendell in January 1880. The Port Officer, Mr. Jhynne, has rendered constant and valuable assistance. 'Two years' olservations have been reduced by Captain Baird, and they form the basis of the 'lide Tables for 1881, which are now being published.
197. At Kurrachec the old small-scale tide-gauge, set up many years ago for Mr. Parker, has been employed throughout the year, because a press of work, caused by the war in Afghanistan, prevented the port officers from setting up the new instruments, though a complete set had been supplied by the middle of the year. An inspection was made by Captain Baird in November 1879; some six years' observations with the old gauge then remained unreduced and were handed over to Captain Baird, by whom they have now been finally brought up and analysed: the results are given in the appendix.
198. At Bombay the tide-gange on the Apollo Bunder las continued to work most satisfactorily: it las been inspected on two occasions by Captain Baird and Mr. Rendell. Another tide-gauge is in readiness to be set up near the entrance to the Prince's Dock.
199. At Karwar the action of the tide-gauge was satisfactory, being continuous with a few trifling exceptions. The anemometer also worked well throughout, but not the ancroid barometer. Inspections were made on three separate occasions, on the last of which the whole of the instruments were taken to pieces and cleaned, and the driving-eloeks were also cleaned.
200. At Beypore the observations have been registered very satisfactorily. the aneroid being the only instrument which has given trouble Inspections were made ou three separate occasions during the course of the year. The arrangements for connecting the well of the tide-gauge with the sca had to be moditied on one occision in order to prevent the piping from becoming choked

Lithographed at the Surveyor Generalis: ОФco, Oallouth, November 1880 .
by mud; but this was accomplished without any sensible interruption in the continuity of the register.
201. At Paumben continuous results have been obtained from the tidegauge, though an accident happened which might have destroyed the value of the register but for the timely and judicious assistance rendered by the Port Officer, Mr. Baker. The band connecting the float with the registering apparatus parted, just above the float; a re-connection was immediately made, but the relation of the pencil on the barrel to the zero of the gauge was necessarily altered in so doing; and the new registration would have been worthless without a determination of the amount of the alteration. Mr. Baker promptly came to the rescue and made the necessary measurements, on being telegraphed to hy Captain Baird to do so. The aneroid barometer has worked well, but not so the anemometer, the clock of which has stopped several times. Paumben is difficult of access, but Mr. Bakcr being resident on the spot, it has not been necessary to make more than one inspection of the observatory during the year.
202. At Madras the communication between the tidal observatory at the shore end of the pier and the sea was destroyed by a cyclone in May 1879; an attempt to restore the communication, by means of a syphon tube laid under the roalway of the pier above the action surf, failed because of the difficulty of expelling the air out of the great length, nearly 600 feet of horizontal tubing. It was obvious that no permanent observatory could be erected until the completion of the breakwater which is now under construction. Meanwhile, a temporary station has been erected at the head of the pier, with the special sanction of His Grace the Duke of Buckingham, on the condition that the space occupied should be the minimum possible and that the observatory should not interfere with the traffic. The action of the surf is so violent that it was necessary to employ a small cylinder, 7 inches in diameter, iustead of one of the usual size, 22 inches in diameter, for the float of the tide-gauge to work in. The cylinder is held in position vertically by three stout iron bars driven to a depth of about 9 feet into the ground, and the whole is attached by a system of chain lashings to the contiguous piles of the pier. The sea-water enters the bottom of the cylinder through a rose, which is intended to keep out the sea-weed; it then ascends through a perforation about an incli in diameter in the centre of a block of wood two feet long, which serves as a plug to the cylinder, and is capped by a metal plate, with a perforation $\frac{1}{8}$ of an inch in diameter. Thus the momentary undulations of the surface are not transmitted into the cylinder, the water in which rises and falls exactly with the tide, as has been shown by an independent verificatory gauge. The change in the cylinder necessitated the employment of a float specially constructed for these observations, and various modifications of the general arrangements and procedure, all of which have been carefully thought out, and are acting satisfactorily. In consequence of the vibrations to which the flooring of the observatory was subjected not only by the action of the sea but by the bumping of the cargo-boats against the pier and the rolling of the landing trucks, it was necessary to substitute a clock with a spring escapement for the ordinary pendulum clock by which the barrel of the gauge is usually driven.
203. The observatory and the cylinder were entirely put up under the superintendence of Captain Taylor, the Master Attendant for the Madras Presidency, to whom Captain Baird expresses himself as much indebted for the trouble he has taken to ensure success in every particular. The work was completed in January 1880, when the registrations were resumed, and they have been continued without any interruption up to the present time.

204, At Vizagapatam the tidal observations have proceeded satisfactorily; the anemometer has worked very well, but the ancroid barometer has given much trouble, necessitating constant reference to the mercurial barometer. The observatory was twice inspected, and on one occasion the clerk in charge was found to have been very negligent in rating his clocks; this work is now done under the immediate superintendence of the Port Officer.
205. At False Point considerable difficulty has been met with in obtaining a suitable site for a tidal station. The site first proposed was at Reddie Point, the extreme north end of Dowdeswell Islaud; but Captain Baird found it would not answer becanse of the varying configuration of the foreshore, the
difficulty of access and distance from the only inhabited locality in the island, the length of piping which would have been necessary to effect a connection between the sea and the observatory, and finally the general doubt of the safety of any structure erected on a moving sand-spit. He decided on erecting the observatory on a staging of piles in the harbour opposite the place called Hookey Tolah; here a few feet of piping suffices for connection with as deep water as is essentially necessary for the observations. The staging is well secured by a mass of stone rubble, and may be regarded as fairly permanent; the observatory is only accessible by boat, which is an objection, but the distance from the shore is not more than 300 yards, and the clerk in charge can readily cross at pleasure. The staging and observatory were reported complete by the Department of Public Works in September 1880, and the regular registration of observations was commenced immediately afterwards; a recent inspection has shown that the staging is not sufficiently firm to resist a strong gale of wind, and arrangements are being made for it to be materially strengthened.
206. At Rangoon a site for the observatory was selected in February 1880 by Captain Baird, in concert with the Port authorities, on the Latter Street wharf. All necessary preliminaries having been completed, the instruments were set up and registration was commenced in the same month, and has gone on satisfactorily ever since. An inspection was made by Mr. Rendell in August. As there is sometimes an interval of nearly half an hour between the turn of the tidal current and the times of high and low water, the clerk in charge has orders to note the time of the turn-as indicated by the swing of vessels at anchor in the river-and enter it in the observatory records, as often as he can conveniently do so.
207. At Elephant Point the observatory is about 50 yards from the telegraph office. It was completed and the instruments were at work by the middle of May 1880, and when inspected in August all was going on satisfactorily; shortly afterwards the piping connected with the sea was carried away by the tide, and a break of ten days on the registration was caused thereby. It is feared that a similar accident may again occur, as the bank is being constantly undercut by the very strong current which rushes past Elephant Point. The water is here highly charged with mud, which is liable to be deposited in the cylinder and piping; special arrangements have therefore been made to flush them out from time to time whenever desirable. The clerk in charge is one of the assistants in the telegraph office, who was authorized by Colonel Murray, the Director General of the Telegraph Department, to undertake the work in addition to his regular duties.
208. At Amherst the observatory is 20 feet to the north of the water pagoda, and is built, like it, on posts let into the rock. A well had to be sunk in the rock for the cylinder and a groove cut for the reception of the piping. Observations were commenced on the 30th July 1880, but it appears that the well was not sunk to a sufficient depth, as some low tides have since occurred which the instrument could not register. This must be rectified at an early opportunity. The ohservatory is only accessible at the times between mid-tide and low water, and by the causeway between the water pagoda and the mainland. The clerk in charge is a Tclegraph Assistant; the anemometer and barometers have therefore been set up in the telegrapl office for convenience.
209. At Moulmein an obscrvatory lias been set up on the main wharf opposite the Master Attendant's office, in which the anemometer and barometers are kept. Registrations were fairly commenced in April, and the work, up to the present time, has been satisfactory, but with a few breaks, owing to the occasional stoppage of the pendulum clocks, hy the vibrations of the wharf, which is far from being as rigid as is to be ressired. Here, too, the turns of the tidal current are observed and noted as at Rangoon.
210. Captain Bean, the Master Attendant, exercises general supervision over the observatories at A mherst and Moummein, and Captain Baird states that he is much indebted to him for his valuable assistance and hearty co-operation.
211. At Port Blair an ohservatory has bern set up close to the pier on Ross Island. It rests partly on the stome wharf and pantly on piles, and is opposite to the Port Officer's house. Recristrations were commenced in Mareh 1880, and have been continuous up to the present time, cxcepting as regards the anemometer. The clerk in charge is a licensed Europan convict, who is also
the Port Signaller. Daily reports are sent to Captain Baird in two batches monthly by the mail stcamers.
212. The barrels of all the tide-gauges are 5 feet in length, and are capable of producing diagrams of the curves of all tides of an amplitude not exceeding 5 feet between extreme high and low water on a natural scale. Λ gear of wheels is supplied with each instrument to enable tides of the largest amplitude to be delineated within the limits of the paper; for this purpose the scales can be changed to $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$, and $\frac{1}{3}$ of the natural scale. In all cases the largest scale that can be employed is the one adopted. The order of scale at the several ports is the following: Natural scale, Madras and Paumben; one-half, Aden, Karwar, Beypore, Vizagapatam, and Port Blair; one-third, False Point; one-fourlh, Bombay and Moulmein ; one - sixth, Rangoon, Amherst, and Elephant Point.
213. The measure of success to be obtained in the accuracy of the tidal registrations depends very greatly on the accuracy of the adjustment of the instrument both to true time and to a definitely fixed level, so that when the pencil in traversing the paper on the barrel crosses an hour-line, the time should be exactly that of the hour indicated; and when it crosses a height-line, the height indicated should be exactly that of the momentary height of the sealevel with reference to the bed plate of the instrument or any fixed bench-mark in its neighbourhood. The several adjustments and settings are, of course, made with great accuracy before the registrations are commenced, but this would be of little use if the instruments were not maintained uniformly in exact adjust. ment throughout the entire period of registration. Happily there is a telegraph office at every place where a tidal observatory has been established, with the exception of Yort Blair, to which time-signals are sent daily from the Madras observatory; arrangements have therefore been made to correct the clocks of the several self-registering instruments to local time, whenever necessary, by communicating with the adjoining telegraph office. For the general examination of the instruments, Captain Baird has introduced a system of periodical inspections, which results in every station being inspected once or twice in the course of the year, or more frequently if necessary, either by himself or one of his assistants. He has also drawn up a programme of instructions as to the matters to be particularly attended to during these inspections, which cannot fail to bring to light any alteration in the adjustment of the tide-gauge or imperfections in the working of the instruments generally. Sometimes a native watchmaker accompanies the inspecting officer for the purpose of repairing and cleaning the clocks. On these occasions any instrument which is found out of order is thoroughly cleaned and repaired, or replaced by another in better condition.
214. The original supply of instruments was calculated to equip six tidal stations for investigations of secular variations in the relations between the land aud sea levels, such as those which have already been commenced in the Gulf of Cutch and are described in previous reports. These operations have now been suspended until a sufficient interval elapses for changes of level to take place, of a magnitude exceeding the probable errors of the determinations of mean sea-level. Meanwhile, the instruments have been lent to the minor Indian ports, which cannot afford to purchase new ones; all the principal ports have, however, been required to pay for their own instrumental equipment. In all cases the instruments have been constructed, as formerly, by Mr. Adie of Loudon; but with various modifications and improvements, which Captain Baird's long experience in their practical mauipulation has enabled him to suggest.
215. The clerk in charge of each obscrvatory is required to send Captain Bairl a daily report, which gives the hourly readings of the tidal diagrams and various items of information regarding the performances of the several instruments, which indicate whether everything has been going on properly. This report is very useful as a check on the vigilance of the observer, and a precaution agrainst the loss of the diagrams in transmission in Captain Baird's office. The paper on the barrels of the tide-gauges is usually taken off once a week; the curres are inked in daily by the clerk in charge whenever he visits the obscrvatory; ink of different colours is used for different dars, to enable the curve of each day to be readily identified, whenever there is any overlapping, as not unfrequently happens.
216. When the whole of the diagrams for any port have been received in Captain Baird's office, whatever corrections may be necessary to the hour-lines for clock crror, and to the height-lines for changes of zero or contraction of paper, are carefully made, and marked on the diagrams; then, the momentary heights corresponding to the hours are measured and tabulated. These values furnish the basis of all the subsequent calculations, by the method of harmonic aualysis, as described in the Annual Report for the Great Trigonometrical Survey for 1876-77.
217. The calculations are very laborious, but fortunately they can mostly be put into a form for mechanical computation by any intelligent natives who know a little aritlometic and the use of logarithm and multiplication tables. Captain Baird has succeeded in doing this in a most satisfactory manner: by apportioning the different stages of the calculations among different computors and introducing a careful system of checks, an enormous amount of work, in the calculation of the constants for the several tidal stations, has been performed, which is lighly creditable to the office.
218. The values of the constants are forwarded by Captain Baird without delay to Mr. Roberts, of the Nurtical Almunac, to be employed in the preparation of tide-tables for each of the ports with the aid of the tide-calculating machine which he constructed for the Indian Government, as previously reported. Tide-tables for 1881 have already been computed and printed for Aden, Karachi, Okha (Gulf of Cutch), Bombay, Karwar, Beypore, Paumben, and Vizagapatam, on the basis of Captain Baird's constants. When it is remembered that up to the present time such tables have been published for no ports in India but Bombay and Karachi, the services which Captain Baird has already rendered to the Marine Authorities and navigation generally will be readily understood. I have every reason to be well satisfied with his assiduous devotion to his work, and the skill with which it is performed.*

XXVIII.-THE SPIRIT-LEVELING OPERATIONS.

1.-Tee Spirit-Leveling Operations in connection wite tiee Tidal Observations.

219. These operations have been conducted under the direction of Captain

Personnel.

Coptnin A. W. Buird, R.F., Agsistant Superintondent lat grade.
Mr. G. Beleham, Surveyor 4th grade. Sub-Surveyor Narsing Dass, and two Recorders. Baird by Mr. Belcham, with a view to connecting the several tidal stations at different points on the Endian coasts by lines of spirit-levels, and while so doing to conncet all the collateral bench-marks of the Inigation and other Departments and reduce them to a common datum. The line from Bombay along the Great Indian Peninsula Railway, which had been carried last year to the station of Kem, was extended this year a distance of 223 miles via Gulburga to Raichur, where it was connected with the line of levels from Bangalore to Karwar, which had been executed in 1873-75. From Gulburga a branch line of levels, 75 miles long, was carried to the Bider Base Line, one of the fundamental bases on which the principal triangulation of India depends for its linear elements. Another branch line was carried from Sholapur to Bijapur, a distance of 93 miles; smaller branches, of an aggregate length of 44 miles, were carried to connect the collateral bench-marks. In all 435 miles were leveled, in accordance with the prescribed rigorous system of operation and by two observers working independently over the same line and comparing results; 28 stone beuch-marks werc set up, and 337 permanent points, of which 28 were bench-marks of the Irrigation Department, were connected for future reference. The whole constitutes a very good outturn of tork for the ficld scason. \dagger

[^27]
2.-The Spirit-leveling operations in connection witu Revende Surveys.

220. The Chief Commissioner of British Burma having sanctioned the taking of levels in councetion with the cadastral surveys in that Province, operations have been commenced in the Hanthawaddy District, where a small leveling party las been employed under the orders of Captain Sandeman, the executive officer in charge of the cadastral survey. Two Assistant Surveyors were successively detached for the leveling, but unfortumately both in turn fell sick, and only $30 \frac{1}{2}$ linear miles were accomplished. The plan of operations in the part of the District where the cadastral survey is now progressing is for lines to be run at distances of about 10 miles apart, and laid down on the maps of the Survey.
XXIX.-GEODE'IIC.
221. The electro-telegraphic operations, for the determination of differences of longitude, have had to remain in abeyance for another year, no officers being available to carry them on. Licutenant-Colonel Maxwell Campbell, R.E., who was associated with Captain Heaviside, R.E., in the operations described in Section xit of the Report of the Great Trigonometrical Survey for 1876-77, returned from Afghanistan at the end of the field season and has been eruployed since then in preparing the volume of the Account of the Great Trigonometrical Survey which will give the details of the longitude operations of previous years. Arrangements were made for the work of observing to be resumed in the following field season, and it is now being proceeded with by Licutenant-Colonel Campbell and Captain Heaviside, on the telegraph lines connecting Kurrachee with Calcutta.

PART II.

THE OPERATIONS AT THE SEVERAL HEAD-QUARTERS' OFFICES.

222. These offices comprise-

(1) The Surveyor General's Office.
(2) The Revenue Survey Office.
(3) The Lithogriphic Office.
(4) The Photographic Office.

All in Calcutta.
(b) The Mathematical Instrument Office.
(6) The Trigonometrical Survey Office, at Delira Dun.

The five offices in Calcutta are still located as formerly in different buildings, the Revenue Survey Office, which is that also of the Deputy Surreyor General, being at a considerable distance from all the others. Very deficient in accommodation when last reported on, they are still more so now, as they are incapable of expansion to meet the growing requirements of the Department, and to provide space for the annual increasing stock of maps for general issue. At last, however, the construction of a new set of buildings to contain the several offices has been commenced, and a building is now being erected which is intended to hold the whole of the Surveyor General's Offices, aud the Revenue Survey Office, under one roof. There is sufficient space on the premises for the construction of buildings for the Lithographic, Photographic and Mathematical Instrument Offices also, as soon as funds can be assigned for the purpose by the Department of Public Works.

1.-The Surveyor General's Office.

223. The superintendence of the work in this office devolves on Captain
 J. I) N. Jumes, Estl, H. Duhau, Esq., P'ersonul Assistint.

Dbating banct.

Draving and Compiling Section.

Mr. J. F. Bnness, Chief Drultsinnn.
Survejor lst Urade.

Geographical Examining Section.
Mr. A. Chimarette. Surveyor 1st grade. H. E. T. Keelan, ditto 2ma .. A. I. Wilson, ditio 2nd " 12. 1. Fincrell, ditto 3rd ," 1hanow M hersif Chunder stinw, ani 3 others.

Enghatino Brancti

Mr. C. W. Comal. Superintendent.
W. Iomalilan.
(3) i. lialmar.

- I. L. MiteLetl.

Mr. J. Fulfors.
" A. G. Jnlmer,
" T. B. R"ulgr.

- S. M. Comed.
* A. W. N, Jumes.
, A. R. Conrd.
", A. I. M. Chumnrette.
${ }^{2}$ E. A. Ollonliacli.
22 Native engravers and 1 clerk.

Copperplate.printing Section.

Mr. W. T. Collins.
11 native printers and presemen, \&c.

Cornrarondrnct Branci

Mr. T. W. Mubonnu, legistrar.
, M. Francis.
, F. A. I'llorario.

- T. E. Ware.

Thbon Iani Madhab Banerjee.
Mr. J. A. Vullis
Habuo Uhceeum Sing and 6 others.

Accounts and Miscellaneous Section.
Mr. N. A. Belletts, Surveyor, lst grade.
(1) E. I. Algur.
and 2 Nutive clirka.
Map, Record and Issue Section.
Mr. IL. A. Gilison, Map Curator.
11. II. Vallis
W. I', Abm.
nul 1 Native rlerk.

Riddell and Mr. J. O. N. James. Captain Riddell has the general charge of the accounts of the three branches of the Department and the immediate supervision of the expenditure and much else in the Topographical Brancly in addition to his dutics as Superintendent of the Lithographic and the Mathematical Instrument Offices. Mr. James, who returned from furloughand relieved Major Stcel in October 1879, has the general charge of the Drawing, Engraving and Despatich Offices. The duties of both offeres are most responsible and laborious, and the Survefor Gemeral has much renson to be satisficd with the manner in which those duties have been performed.*

[^28]224. The work performed in the Drawing Branch during the past year was of the usual kind, viz., compilations on various scales, and from various materials, for maps of the British lrovinces, Native States aud Alghanistan; maps to illustrate special reports; drawings for the sheets of the Indian Atlas reduced from departmental surveys; drawings for photozincography, of new editions of some of the standard shects of old topographical surveys; copies of maps, plans, charts, \&c., for varions departments; aud colouring of maps and plans for issue.
225. During the past year the demand for maps of Afghaistan has bren great and very urgent; the compilation of new maps from time to time to embody all the latest geographical information as soon as possible after it reached the office has engrossed much of the working power of the office, and retarded the completion of various maps which were in haud and which, though of much importance, had to give way to more pressing requirements. The extensive survey operations in Afghanistan produced from time to time a large quantity of new materials which it was necessary to utilise speedily; thus, in the interval between October 1879 and Augnst 1850, five clitions of the large map issued under the suceessive titles of the two routes to Kabul and the Seat of War in Northern Afghanistan were compiled on the scale of 1 inch $=4$ miles and published. Two ellitions of the map of Quetta to Kelat-i-Ghizai and Girishk, and a first edition of the map of Sibi to Quctta and Thal-Chotiali to the Pishin Valles, have also been pullishicd on the same seale to provile for immediate reguirements; as regards Southern Afghanistan and Belnchistan, a new map of these rerions is under compilation and should be published shortly.
226. Additions have been made, as opportunity permitted, to the maps of India on the scales of 1 inch to 32 and 64 miles, and also to the provincial maps on the scale of 1 inch to 16 miles. The map of Bengal was ready for transfer to stone in outline when it became necessary to make numerous corrections to the boundaries of districts hecause of tervitorial alterations which had recently taken place under the orders of the Bengal Government; the hill-drawing for the western half of this map is nearly ready for the lithographer. The map of Assam, scale 1 inch $=\mathbf{1 6}$ miles, has been revised and completed to date in outline; a new compilation of Berar, seale 1 inch $=8$ miles, has been commenced. Considerable additions lave been made from recent survey materials to fifteen sheets of the Indian Atlas, and fourteen now sheets have been commenced. Four shects of the old Ganjam and Orissa Topographical Survey, scale 1 inch $=$ 2 miles; twelve sheets of the Hyderabad and three sheets of the Central Provinces 'lopographical Survers, seale 1 inch $=1$ mile, have been re-drawn and others are in liand; and a considerable amount of miscellaneons mapping has been completed. The details of all this work will be found in the usual tabular statement given in the appendix.
227. 'Ihe employment of the pantograph for the reduction of survey results on the shects of the Indian Atlas latring been found both tedious and unsatisfactory, photographic reductions to the required scale are now emploged insteal; with carcful manipulation in setting the reduced photographs on the points fixed ly triangulation and the intersections of the lines of latitude and longitude, all desirable accuracy is obtained and the draftsman is less embarrassed in deciding what details should be omitted to suit the reduced scale of his drawing.*
229. The Examining Brench has worked very satisfactorily in the careful examination and scrutiny of all the mapping and field work received from the several survey parties, also of the work performed in the drawing office, and of the proots from the lithngraphic, photozincographic and engraving offices; 40 of the standard sheets of the topographieal surveys, 34 original compilatious and drawings of rarious kinds and 254 proofs of cngravings, lithographs and zincographs have been examined. In addition to this a large amount of miscellancous work, including the projection of lines of latitude and longitude, and

[^29]trigonometrically fixed points and calculations of area, \&c., for statistical reports has been performed.*
229. Engraving Office.-This office was primarily formed for engraving the sheets of the Indian Atlas on the scale of 1 inch $=4$ miles. But, as there is a much larger demand for the several smaller-scale maps of India, and the various Provinces, and these maps require to be at least as highly finished as the Indian Atlas, now editions of those maps have either been already put into the hands of the engravers or are in progress with that object. Now, it so happens that there are still very large areas within and on the frontier of India which have not been surveyed at all, or only very roughly, so that the matcrials for filling in these areas on the maps are far less accurate and satisfactory than those for the areas which have actually been surveyed. In such cases the work of the engraver is restricted within the limits of exact survey, as it is not desirable that anything should be engraved on the copper-plate which may soon require to be erased. When the engraving is completed so far, a transfer is made from the plate to a lithographic stone, and the remaining details are drawn on the stone, which is a nuch quicker and less expensive process than engraving on metal. The map is then ready for publication as a preliminary edition. Even when the whole of the materials are exact, it is sometimes necessary to make a transfer from the copper to the stone, for maps containing much hill work, as soon as the engraving of the names and outlines is completed and before the etching of the hills is commenced; for etching on copper is a slow and laborious process; so a preliminary edition of the map with the hills drawn on stone is occasionally required as a make-shift until the more beautiful aud highly finished etching on copper can be completed.
230. Of the map of India, scale 1 inch $=32$ miles, sheet 1 of the Punjab and the North-West Frontier has been transferred to stone, but it requires large corrections for Afghanistan. Sheet 2 has been drawn on stone, as it contains incomplete geograply relating to the northern portions of Nepal, Bhotan, and the course of the Sanpu River; sheets 3, 4, 5 and 6 are also ready for transfers to stone in outline. The blanks on these sheets for the unsurveyed pertions within and beyond India will be drawn on stone from the best available maps of routes and explorations; the hills will also be completed on stone for a first edition. Large additions from surveys in progress have been made to the map of India, scale 1 inch $=64$ miles, to complete it up to date, and a fresh transfer to stone has been taken. The maps of Bengal and Assam, scale 1 inch $=16$ miles, have been completed in outline; the map of the Central Provinces, on the same scale, is nearly ready, and the maps of the Rajputana and Central India Agencies are near completion up to the limits surveyed. Twelve new quarter plates, which were in various stages of progress last year, have been completed and published, and twenty-six others have been fairly advanced either in outline and writing, or in hill-etching. Additions and corrections from surveys in progress and new lines of roads and railways have been inserted on nineteen plates, and repairs to outline, writing and hills have been well advanced on nine plates.
231. The total outturn, reckoned as it was last year, in square inches, is as follows:-

Owing to the intricacies of the work in its various stages of outline, lettering of different kinds and sizes, ornamentation, hill-etching, sand-dotting and corrections, and the number of hands through which each plate passes in various stages, it is very difficult to arrive at any satisfactory method of classifying aud calculating with fair accuracy the actual outturn of work; but efforts are being made to arrive at some fairly accurate system of estimating the outturn and checking the cost.
232. In addition to the above, much useful miscellaneous work has been completed, a variety of scales have been engraved, a drawing of an idiometer

[^30]

Publisbed urder the direction of Major General J. T. Walker, C.B, RE., F.R., Surveyor General of Tndis,
to illustrate one of the forthcoming volumes of the Account of the Operations of the Great Trigonometrical Survey has been very skilfully etched on copper, and a chart of the Indian ocean showing the localities of all wrecks has been commenced for the Marine Survey Department.
233. The process of steel facing continues to be performed on the copperplates successfully, and without any detriment to the plates, such as happened when it was originally commenced in this office. Twenty-two of the new quarter plates of the Indian Atlas and seventeen of the old full plates (double elephant size) have been thus treated and printed from; none of the plates show the least sign of wear or of suffering from rust or other effects of climate. 'lo preserre the steel facing it is sufficient to apply coatings of Brunswick black at stated intervals. The steel surface preserves the most delicate portions of the work on the copper plates from wear or deterioration in the press; thus it is no longer necessary to make transfers from the copper-plate to stone, that prints may be taken from the stone in order to preserve the plate, but prints are talien directly from the plate, and with the satisfactory result of being sharper and clearer than those from the stonc. Full details of all the work completed and in progress in the Engraving Branch are given in the appendix.*
234. The Map Record and Issue Section has continued to work under considerable pressure caused by the large demand for maps of Afghanistan and the North-West Frontier ; the issue of maps to agents for sale to the public has also been greater than usual. The applications received for maps by letters, indents and telegraph messages numbered 2,228 ; the letters issued either in reply or as advice were 1,290 ; the invoices and maj reecipts issued numbered 3,282 . The total number of packets and parcels despatched were 5,774.

The map issues bave been as follows:-

		Maps.		ue.
			Rs.	A. P.
Tu Government officials	- .	26,597	42,806	49
, India Office, Lundon	. .	3,235	6,104	60
"Agents for sale	- -	3,974	8,095	d
	Total	33,796	57,005	119

In this branch of the office 22,662 shects of maps and plans were coloured by contract. \dagger The anount realized by the sale of maps and placed to the credit of Government ly this office, is Rs. 9,621.
235. The re-arrangement, classification under distinct heads in accordance with the present territorial divisions of India, and cataloguing of the original maps in the office have been gone on with as opportunity permitted. Section III, which comprises the river, canal and railway maps, has been completed ; and Section IV, which comprises maps of eivil divisions in the three Presidencies and Native States, is in hand. In these two sections, $1,73 \pm$ maps in 4,071 sheets have been examined, grouped according to their respective divisions, labelled or ticketed, and numbered and catalogued. Formerly the maps were kept in rolls, but they are now folded suitably and laid flat, a form in which the mans are more casily accessible and less liable to injury. This work, which is likely to take more than a year to complete, was not commenced a day too soon, as the mumerous changes which have taken place in the limits, both external and internal, of the several jurisdictions, provinces, distriets and Native States in India had much impaired the value of the old registers of maps, and made most of them almost useless, so that much time was liable to le lost in searching for old records under different heads.

[^31]
2.-The Revende Survey Office.

236. A summary of the results and cost of the field work of the several

Prrsonnel.

Lieutenant-Colonel J. Sconce, Deputy Surveyor General, and Superintendent, Revenuo Branch.
Major l'. Coddington, Deputy Superiutendent. 2 nd grade.

Inating Branoit

Mr. F. W. Kelly, Surveycr and Head Draftsmon.
, J. Combor, Assistnat Sursegor nad Drafts.
Sheikh Mehir Ally, Draftemno.
., Golam Mohnmed, "
-, Abdal Aziz,
,, Rohim Bux,
and 5 other draftemen and 7 colorists.
Map Examining.
Mr. J. A. May, Surveyor and Drafteman. T. W. Reills,

Sheikb Abdur Razak, Draftsinan.

- Wahed Bux

Computing and record examiuing.
Bnhoo Harihur Sem, Head Computer.
" Tincowry Sen, Computer, and two others.

Cadastral map examining.

Mr. W. Sincluir, Surveror and Drafteman. Sheikh Kolrut Alli, Draltsmmn, and 5 other draftsmen aud one clerk.

Recorlls and map isnce.

Mr. W. J. Lnne, Assistant Surveyor.
Baboo Ashootosh Kur, and 1 other.

Corbespondmen and accounta diancif.

Correspondence.

Nr. A. E. Myrn, Registrur.

, A. C. Cumningham, Head Clerk
Binboo Kolly pudo Bunerjee, Clerk.
" Doorgnarain Ghose ,
," Ramkisto Chunder
and 5 other cleiks and copyists.

Accounts.
Mr. Gopal Chunder Laha, Hend Accomintunt. Bnboo Bamn Churn Chuckerbutty, Accountnint, and two others.

Despalcher.

Baboo Judo Nath Mookerjec. parties of the Revenue Branch is given at page 64. A statement of the principal recordsprepared in the executive offices is given in table A at page 62 of the appendix; a detailed statement of the work done by the Drawing Branch of the Head Office is given in table B at page 63 of the appendix; and table C , at page 67 of the appendix, shows
the state of the publication of the cadastral maps.
237. The summary of the field work shows there has been an increase of 1,018 square miles in the cadastral area over the return of the previous year, while the general rate of 5 annas $8 \frac{1}{2}$ pie per acre is very similar to the general rate of the 16 -inch surveys of last year, though all the old parties show a considerable reduction in their rates. The village survey area, on the 4 -inch scale, is 2,373 square miles less than last year, chiefly owing to the abolition of one of the parties. The Topographical Survey area on the 2 -inch scale by revenue survey parties is 378 square miles more than last year.
238. The following original maps received from Executive Officers have been examined and published during the year, viz.:-

Sirsa District 16 slieets on l-inch scale.
Deccan Topographical Surverg (drawn in 24 sections on 2-iuch scale) . . . 6 ,"

The following maps drawn in the Head Office have also been published, viz.:-

Bannu and Dera Ismail Khan Districta (drawn in sectious on 2 -inch scale)	9 sheets on 1-iuch scale.		
Midnapore District (drawn in 56 sections on 2-inch seale)	14		,
Muttra District (drawn in 28 sections on 2-inch scale)	7		

The disposal of the cadastral maps has continued to occupy the attention of a large section of the office; 2,985 maps and the proof copies of 2,926 have been examined between 1st January and the 30th September, up to which date the return has been prepared to agree with the other returns of the department. All the maps have this year been published at the Photographic Branch of the Surveyor General's Office.
239. The records received from field parties during the year have all been carefully examined, and a percentage of the computations of 4 districts has been cheeked. Revised area statements of districts Midnapore, Hooghly, Muttra, and Jhung have been made according to revised limits. The proparation of the new register of the records in the Head Office has been continucd. A large part of the correspondence section of the office continues to be employed in checking the hills of the field parties and in keeping the accounts of the Revenue Branch gencrally.
24.0. The Deputy Surreyor Geueral again acknowledges the very valuable aid which Major F: Coddington, on duty in his office, has rendered to him."

3.-Lithographic Brance.

241. The total number of maps, plans, diagrams, \&c., printed during the

Pribonnel.

Captnin R. V. Riddell, IR. E., in clinge
Br. E. Jevezy, Hemd Assistant and Chief Draftaman (on furlongli).
Miv. H. Ferns Lenge, Officiating
ditto.
Mr. H. Ferns
Buboo IBuloram Nnth ${ }^{\text {a }}$
Munghee Muhomed Azim :- Draftmen. Soblan llukeli year, amounts to 160,346 copies; of these 119,100 copies, or nearly three-fourths, were done for other departments and were very varied in character; the remainder were printed for the requirements of this Office.
242. The map of the District of Maldal, on the scale of $1 \mathrm{inch}=1$ mile, has been lithographed. The 1 -inch $=1$ mile maps of the Districts of Jalpaiguri and Noacolly have been taken in hand during
Mr. H. Niven, Chromo.Preinter.
" E. D'Pyrnh, Printel.
1"Press Asaistant and 17 others.
3 Nntive Clerks. the year, the former in 13 sheets and the latter in 12 sheets. The stock of several of the sheets of the Oudh map on the scale of 1 inch $=1$ mile having become nearly exhausted, a second edition has been commenced; 3 sheets have been drawn, and the modern spelling has been adopted.
243. Maps of the Districts noted in the margin have been transferred to stone from the copper-plates of the sheets

> District Rungpore.
> - Din:urepore.
> , Shaluland.
> ", Jalpuiguri. of the Atlas of India and published during the year. Similar maps are under preparation of six other Districts, viz., Mymensing, Dacca, Furreedpoor, Backergunge, Noacolly and Sylhet. Copies of the sheets of the Atlas of India specified in the margin have been transferred to stone

Quarter slect, No. 66 8. W.
 from the engraved plates, corrected up to date on the stone and printed to meet immediate demands, the original stock having become exhausted.
244. A proliminary edition of the map of India, scale 1 inch $=64$ miles, with the outlines transferred from the copper-plate and the hills drawn on the stone in chalk, has been completed and pullished to mect immediate requirements pending the completion of the lill-etching on the copper, as the demand for this map is very great. \dagger

4. -Tief Photographic Office.

Prisonnel.

Major J. Waterhouse, B.S.C., Assistant Surveror General, on furlough from 11th December 1879.
S. H. Cownn, B.E.C., Oflicinting Assistnot Surveyor General, in charge.

Negafive Branch.

Mr. J. Mnekenzic, Mhotograpli		
	C. Marshull,	ditto.
"	L. Lagnier,	to.
	G. G. Dempster,	ditito.
	T. Lloyd,	ditto

Sileer Printing Branch.
Uinbicn Churn Ihnttachurjee, Assistant
I'hotograplier, and 1 nutive assistant.

Zine Prinling Dranch.

Mr. B. Mnckenzic, Ziucographer

$$
\begin{aligned}
& \text { J. Wateon, } \\
& \text { ditto. } \\
& \text { E. A. LeFrane }
\end{aligned}
$$

12 zine correctors, 12 printers, 7 grainers and 36 pressmen.
245. The tabular statements in the appendix give full details of the account and value of the work executed in this office on account of the Survey Depart. ment, and a summary of the work done in compliance with the

[^32]Photographic Transfer Dranch.
Mr. J. Harrold, Plotogrnpher.
. R. George ditto.

Offce and Store Branch.
Mr. A. E. Cnclds, Store-keeper and General Assistnnt.
Syud Ishmail, Head Clerk and Account-
requirements of all other departments; also an abstract of the cost of the office. 246. The details of the work executed during the year are shown in the following table:-
abstiact of work performed in the Photographic Offiee, from 1st Uctober 1879 to 30th September 1880.

	Original Section or Sheets.	$\begin{gathered} \text { Negr. } \\ \text { tive } \\ \text { plates. } \end{gathered}$	Photographio transfer prints.	Transfer to zino stone.	Number of palls.		ER OF ACH JECT.	Silver and other prints	Remarig.
Topogrephical maps	72	224	189	58	7,527	7,527	7,527		
Revenuo Survey,	288	383	469	56	10,658	10,678	10,570	\ldots	
District maps . .	-..	..'	...	2	310	310	1310	\ldots	
General ${ }^{\text {a }}$. ${ }^{\text {a }}$	13	2	...	38	5,980	4,350	4,350	...	
City and Cantonments, Plans.	12	55	55	$14 \frac{1}{2}$	2,680	2,685	685	\ldots	
Miscellaneous Department. .	502	037	573	$409{ }^{2}$	31,3+2	39,664	31,471	..	
Ditto extra-departmental	542	628	649	390	64,058	1,91,431	1,85,371	..	
Transfers and proofs	--	\cdots	2,595	...	…	...	
Pigment prints	\ldots	\ldots	29	
Platinum Silver Pr	\ldots	\cdots	56 932	
Total	1,429	1,929	1,935	968	125,150	250,670	140,309	1,017	
Cedestral, North.Western Provinces. Photozincographs Zincographs	2,000 408	2,000	2,105	$\begin{array}{r}2,160 \\ 367 \\ \hline\end{array}$	58,307 9,369	$\begin{array}{r} 58,307 \\ 9,369 \end{array}$	$\begin{array}{r} 41,57 \pi \\ 8,544 \end{array}$	\cdots	
Total	2,408	2,000	2,105	2,527	67,676	67,676	50,122	...	
Cadastral, Lower Provincos Photozincogrmphs Zincogrnphs	941 73	909	910	$\begin{array}{r} 941 \\ 73 \end{array}$	$\begin{array}{r} 39,689 \\ 3,913 \end{array}$	39,689 3,913	$\begin{array}{r}11,739 \\ 2,050 \\ \hline 18\end{array}$	… \cdots \cdots	
Total	1,014	909	910	1,014	43,602	43,602	13.769	\ldots	
Cadastral, British Burma, Photozincographs Trunsfors and proofs for cadastral mape	... ${ }^{5}$	${ }^{\text {. }}{ }^{5}$	1	... 1	$\begin{array}{r} 120 \\ 7,006 \end{array}$	120	120	.'.',	
Grand Total	4,8i¢	4,843	4,951	4,510	243,554	368,068	201, 3-10	1,017	

247. The number of cadastral maps of the North-Western Provinces published during the year is 2,527 , of which 2,160 were photozincographed, 113 were printed from re-transfers and 254 from transfers traced by hand. It is satisfactory to note that a large proportion of these were the results of field work of the cold season of $1879-80$. Of the Government estate of Khorda in District Pooree 1,014 maps were published, of which 941 were photozincographed.

The work done for other departments forms a very large proportion of the total outturn of the office, amounting to upwards of $\frac{2}{5}$ of the whole, excluding cadastral maps.*

5.-THE MATHEMATICAL INSTRUMENT DEPARTMENT.

248. During the year 1879-80 the receipts of instruments in the depot were as follows:

Personnel.

Ceptain R. V. Riddell, R.E., Superintendent.

Workahop Branch.

Mr. R. Wehlisch, Mathematical Instrument Mnker (on furlough).
Mr. T. Molton, Oficinting Mnthematical Inatrament Maier.
Mr. J. Keymer, Officiating Assistnnt Mathemntical lustrument Maker, froin 1st April to Bth September 1879.

Mr. B. J. Cardozn, Officiating Assistant Mnthematicnl Inst-ument Mnker. from lat December 1879 to 31st March 1880 66 I'ermument nrtificers and on an nverage 77 temporary artíficers.

Store Branch.
Mr. G. R. Alderman, Store-keeper
Unbno Womesh Chunder Chowdry, Packing Sircar.

Office Establishment.
Mr. M. O'Brien, Head Clerk.
J. W. Collins, 2nd

6 other Permment Clerks and 2 Eistra Clerks. about 250, in value Rs. 8,200, were obtained from England; nearly 1,300 were purchased in the local market, at a
cost of a little more than Rs. 6,900; about 4,500 were manufactured on the premises, at a cost of Rs. 13,300; over 7,700 instruments, in value about

[^33]Rs. 67,000 , were received by inter-departmental exchange ; of which about 290 were serviceable, and 4,800 were repairable. The serviceable stock was further increased by more than 4,300 instruments which had been repaired and rendered fit for future issue, at a cost of a little over Rs. 13,300, and after repair were valued at nearly Rs. 45,600 . Over 1,600 instruments were repaired for various departments at a cost of Rs. 11,522.
249. More than 14,000 instruments, in value over Rs. $1,07,200$, were issutd during the year, viz. :-

The principal instruments issued were of the same class, for the several departments concerned, as those enumerated in paragraph 355, page 70 of the Gencral Report for the year 1878-79.
250. The following statement shows the detail of the principal instruments locally purchased, their cost, and, as far as comparison can be made, the excess of the Calcutta prices over the values at which they would have been issued had they been procured from England.

Names of Inatrumenta.	No. of inpurchased	Amnent paid in Calculta,	Isane value of corrcaponiling insirumenta obtrined froun England.	Excers of Cnlentia prices over issue value.
		Mg. A. P.	Is. A. P.	Rs. A. P.
Barometers, nuoroid, packet	16	965880	750	21580
Compasses, Nnpser's, nud pillar	5	$128 \quad 00$	$\begin{array}{llll}99 & 0 & 0\end{array}$	2900
Lenser, rending .	24	$\begin{array}{llll}70 & 4 & 0\end{array}$	5200	1840
Levels, reflecting	7	27100	230	$41 \quad 0 \quad 0$
Protractors .	46	55800	40800	150 0 0
Scales, plotting, de.	90	540 0 0	45200	$88 \quad 0 \quad 0$
Sertants, pocket.	4	$360 \quad 0$	$260 \quad 0 \quad 0$	$100 \quad 0 \quad 0$
Tapes, mensuring .	475	3.47000	2,903 00	57700
Total	667	6,369 $12 \quad 0$	5,14400	1,218 120

It is not casy to form an exact estimate in all cases of the values at which instruments locally purchased might have been procured from England, for so much depeads on the quality of the instruments; but, as far as a comparison can be made, the result shows that the rates paid here were about 25 per cent. in excess of the rates at which the several instruments might have been issued had they been procured from England. The purchase of instruments to the value of at least Rs. 2,000 was due to sudden demands to meet the requirements of the Afghanistan Expedition.
251. The principal instruments manufactured in the workshop are detailed below :-

Napics of Idstruments.	$\begin{gathered} \text { No. } \\ \text { mnnufnc- } \\ \text { tured. } \end{gathered}$	Cosi of manulncture.
		IRs. A. P.
Hontds, drnwing	13	$125 \quad 6 \quad 0$
Cluins of various sizes -	316	2,22s 11 (
Plone-tables. . .	2018	2.3371140
Rules, elcetrinm, on rollers	72	1,536 70
". sight, for planc tables	78	496140
Ecules, officts, metal - .	36	153100
Squares, oplical .	100	647100
- ${ }^{\text {set, wonden }}$	144	12260
Stands for plane-tnbles .	115	$\begin{array}{lll}1,156 & 6 & 0\end{array}$

The savings effected by departmental manufacture have been calculated at about Rs. 2,000, or tery nearly the same as in the previons year.
252. Besides the ordinary instruments above referred to, an idiometer designed by Lieutenant-Colonel W. M. Campbell, R.E., which has for some time past been under construction, under his own supervision, has been completed. The object of this instrument is to afford means of measuring the absolute personal equations in observations of star transits recorded on a chronograph. The general arrangement is that of a moveable frame, carrying vertical wires, in imitation of the wires of a telescope, which passes in front of a fixed imitation star; a small observing telescope is attached to the wire frame, so as to follow its movements, and thus the appearance of fixed wires and a moveable star is obtained. As each wire passes the star two signals are recorded on the chronograph, one by the observer and the other automatically by the instrument.
253. The total number of instruments repaired in the workshop was about 6,000 , and the value of the repairs has been calculated at Rs, 25,065 . The principal instruments repaired were as follows:-

254. The receipts from England were exceptionally small, the greater proportion of the stores due during the year having arrived after its termination.

255 . The aggregate cost of the portion of the establishment which was employed in the construction and repair of instruments, the cost of the material expended, the share of office accommodation, the estimated loss of wear and tear of block, and other petty contingencies, amounted in all to about Rs. 41,750; this sum is almost exactly balanced by the value of work done as estimated in the case of instruments manufactured, by the value at which they are issued; and in the case of instruments repaired, by the difference between the value at which they are issucd or placed in store for future issue and that at which they were rated previous to repair. The cost of the remaining portion of the establishment, including supervision, office accommodation, packing expenses, \&c., was about Rs. 18,300. This may be considered to have been expended on the receipt and issue of over 32,490 instruments valued at about Rs. 2,16,000.
256. Towards the end of the year stock was taken, and, as the rating was found to be generally at too low values, the occasion was taken to make a re-valuation. The serviceable and repairable instruments taken together, exclusive of material, machinery, and plant, were found to be over 42,000 in number, and in value about Rs. 3,18,010.*

[^34]
6.-The Trigonometrical Survey Office.

257. The principal work of this office is the final reduction and publication

Pelisonnel.

J. B. N. Henupssey, Fsq., M.A.,F.R.S, | Mr. H. L'. T'. Krelan, Surveyor 2nd Grade, Deputy Superintendent 1st Grule, in charge.
W. II. Cole, Esq., M.A., Assigtant Superintendent 1st Grade.

Comprting Branch.
Mr. C. Wond, Surveyor 2ud Grade. "H. W. Peychers, " 4ll \quad, Lubu Gungn Persail, "'omputer.
. Cally Mohnon Ghose,
"Kolly Comar Chatterjee ", nul 10 other Computers, \&c.

P inting Branch.

Mr. M. J. O'Connor, l'rinter, and 15 Compositors und Apprentices.

Correspondence and Storrs.

Mr. I. H. Clurke, Sulveyor 2nd Grade, from 1st (ectober 1879 to 7 th December 1879.

Mr. W. Todd, Surverer 2nd Grade, from sih December 1879 to 31st July 1850.
from 1st August 1840, and 2 Natise Writers.

Solar Photugraphy.
Mr. L. HI. Charke, Surveyor 2nd Grade, frombth December 1870 .

Photozincopraphic Aranch.
Mr. C. G. Ollenineli, Zinengrnpher. C. Dyson, l'h thgempher.

1 Native Apprentice Photograpler.
2 " Draltsmen.
1 . $A_{\text {pprentice }}$ Draftsman, and 1 Map-keeper.

Draving Branch,

Mr. W. Todd, Surveyor End Grade, from 1st Octoler 1879 to 15th Nuvember 1479.

Mr. G. W. F. Atkinam, Surveyor 3rd Grade, from 16 th hovember 1869 .
Jatir Khan, and 6 other Draftemen.
1 Assistont Druftrman, and 14 appren. tiece und Map Colonists. of the triangulation of all parts of Iudia, and the reproduction of the Surveys executed in the Trigonometrical Branch of the Department. The office being locatcd at Dehra-Dún, at a considerable distance from Calcutta, has a Drawing Branch, a Photozincographic Branch, and a Priuting Branch of its own; it is thus independent of all extrancous assistance in the matter of publication, excepting as regards the binding of its productions, which has to be done elsewhere-usually at Calcutta. The office has also a depôt of instruments and stores attached to it, chicfly containing the liigher class of instruments appertaining to the Trigonometrical Surver, of which it has long been the Head-Quarters Office. It is now, and has for many years, been under the immediate and able superintendence of Mr. Hennesscy, M.A.,F.R.S., who is well aided by Mr. Cole, M.A.
258. The great work of the final reduction of the observations and measurements, both linear and angular, of the Great Trigonometrical Survey, and the publication of the results, has been making good progress.
259. The final reduction of the astronomical observations for determinations of latitude had long remained in abeyance, pending the publication by the principal observatories in Europe and other parts of the globe of star catalogues, giving the places of the stars to which observations have been taken with sufficient exactitude for geodetic investigations. The place-values which are given in different catalogues olten differ materially, when reduced to a common epoch, and it is no casy matter to determine the exact position of a star at any time when it may happen to have been observed, during the period of 80 years which has elapsed since geodetic operations were commenced in India. This work, which is a necessary preliminary to the final reductions, has been taken in hand by Mr. Itennossey during the present yenr, and is boing proceeded with very satisfactorily; it is now so far advanced that the printing of Volume ix of the Account of the Operations of the Great Trigonometrical Survey, which is intended to contain the latitude observations, has been commenced.
260. The longitude observations are of comparatively modern origin, having been commenced in 1872, ly electro-telegraphic determinations of differences of longitude. Operations had been carried on through thyee field ${ }^{-}$ seasons, when they were put a stop to as no oflicers were available to go on with them. The return this rear from Afohanistan of Lieutenaut-Colonel Campleell, who had been employed in the whole of the operations already completed, has enabled the final reductions to be taken in hand. Thus the printing of Volume x, which is to be devoted to the electro-telegraphic observations and their results, has been commonced and is now well advanced.
261. The final reductions of triangulation have been principally those counceted with the adjustment of various secoudary chains of triangles, which depend on the already reduced principal chains that appertain to the three great sections of the principal triangulation known as, first, the North-West Quadrilateral, of which the results are published in Volumes II, III, and iv of the Account of the Operations of the Great Trimonometrical Survey; secondly, the South-East Quadrilateral, now being published in Volume vi;
and, thirdly, the North-East Quadrilateral, forming the subject of Volumes vir and VIII, not yet published. The final reduction of the two great sections of the principal triangulation which are still unreduced, viz., the South-West Quadrilateral and the Southern Trigon, was initiated as soon as possible after the completion of the triangulation in the Madras Presidency,-see paragraphs 3 and 12.
262. Each of the volumes above mentioned requires much explanatory matter, descriptive of the general progress of the operations, and of the general principles on which the final calculations have been carried out in order to obtain the most probable results of the observations. This work has been completed for Volume vi during the present year, and commenced for Volumes vir and viri, and has been mainly performed by Mr. Cole.
263. Volume v, giving the account of the Pendulum Operations, which was stated in the last report to be in the hands of the bookbinder, has been published, and presentation copies have been supplied to all leading scientific societies, libraries, and geodesists in all quarters of the globe. The printing of Volume vi was completed, and the sheets were ready to be sent to the bookbinders. It is expected that Volumes vir and viri will be published by the end of 1881. Portions of the four following volumes have also been printed.
264. Of the Synoptical Volumes-which give a precis of the results of the triangulation, both principal and secondary, for the requirements of topographers and geographers-volumes 7 to 9 were published during the year, 10 to 13 were ready for the binder, and 14 more were well advanced towards completion.
265. The Auxiliary Tables for facilitating the calculations of the Indian Survey Department have been supplemented by a table of " mile-equivalents in feet and links," and a table for readily determining the so-called "subtended angle" for observations of unreciprocated vertical angles.
266. A pamphlet, giving the results of the spirit-leveling operations in portions of the Bombay Presidency, has been printed. A large amount of data of spirit-levels, taken by officers of the Irrigation Department in various parts of India, but chiefly in the Punjab, has been collected and is being embodied into the departmental charts of spirit-levels.
267. In the Drawing Office considerable progress has been made towards the completion of a fifth edition of the Turkestan Map; but the advent of new materials from various quarters, including Russia as well as Afghanistan, has much retarded publication, in some cases necessitating the re-drawing of large portions of the map.
268. Various charts of triangulation, with full numerical details, have been published, including the triangulations to Quetta, Khelat, and Kandahar. Ten charts have been prepared and photozincographed to illustrate the principal and synoptical volumes. All the maps of the current year's work of the Guzerat and Kattywar Topographical Surveys, and of the Forest Survey Department, have been published in this office, and also various maps of portions of Afghanistan, which were drawn at the Mussoorie Head-Quarters by Captain Holdich, Major Beavan, and Lientenant Gore.
269. The taking of daily photographs of the sun, which had been suspended since the death of Mr. Meins on the 31st March 1879, was resumed on the 17th December by Mr. L. H. Clarke, acting under Mr. Hennessey's supervision, and with occasional assistance from the Photographic Office. During the 289 days from 17 th December 1879 to 30th September 1830, solar phenomena were visible on 191 days; no phenomena were visible on 47 days, and there were 51 days of bad weather when the sun was hidden by clouds and remained invisible throughout the day.*

[^35]

Alstract of the Outhurn of Work executed by the TRIGONOMETRICAL PdRTIES during the Survey year 1879-80.

\begin{tabular}{|c|c|c|c|c|}
\hline Dagcription of Datale. \& $$
\left|\begin{array}{c}
\text { Marras } \\
\text { cungt merien } \\
\text { 2l.incth } \\
\text { theodolte. }
\end{array}\right|
$$ \& $$
\left|\begin{array}{c}
\text { Enatern } \\
\text { sind } \\
\text { 2ininch } \\
\text { theodolite. }
\end{array}\right|
$$ \& $$
\begin{gathered}
\text { Enatern } \\
\text { Frontilich } \\
\text { 2forneh } \\
\text { (heodolite. }
\end{gathered}
$$ \& Totale.

\hline Number of principal stations newly fixed \& 11 \& 12 \& 3 \& 26

\hline Do. do. triangles completed. \& 18 \& 16 \& 4 \& 36

\hline Lengthe of principal series in miles \& 68 \& 64 \& 33 \& 165

\hline Area of principal triangulatiou in aquare miles \& 2,001 \& 1,278 \& 670 \& 3,949

\hline Average triangular error in seconds \& $0^{\prime \prime} 26$ \& $0 \cdot 34$ \& 43 \& ...

\hline Do. probable error of ungles in secouds \pm \& $0 \cdot 13$ \& ... \& $\cdot 37$ \& ...

\hline Astronounical azimuths of verificalion observed \& 2 \& 1 \& 0 \& 3

\hline Number of principal stations selected in adrance \& .. \& ... \& \ldots \& ...

\hline Lengths of principul approsimate series in advance . \& \cdots \& ... \& ... \& ...

\hline Number of towers, pillars and platforms constructed for principal stations \& 7 \& ... \& ... \& \cdots

\hline Number of scaffolds erected for principal stations \& 1 \& ** \& ... \&

\hline Do. principal stations placed under official protection \& 13 \& 15 \& 5 \& ..

\hline Do. do. do. protected and closed \& ... \& 13 \& ... \& ..

\hline Do. do. do. the elements of which have been $\begin{gathered}\text { conputerl. } .\end{gathered}$ \& 13 \& .'. \& - \& ...

\hline Do. secondary stations fixed \& 17 \& 16 \& \cdots \& 33

\hline Do. do. triangles, of which all three angles have been observed . \& 20 \& 20 \& .'. \& -."

\hline Do. do. do. of which ouly tivo angles have been \& 73 \& 18 \& .. \& ...

\hline Lengthr of eccondary series in miles \& 90 \& 60 \& ... \& 150

\hline Area of secoudury triangulation in square miles \& 1,099 \& 619 \& ... \& 1,718

\hline Do. embraced by triangulation to prominent points exterior to principal triaugulation and in square miles \& 296 \& 3,035 \& ... \& 3,331

\hline Number of points fixed by intersection, but not visited \& 65 \& 107 \& ... \& 172

\hline Do. stations and points, the heights of which have been determined \& 67 \& 121 \& .. \& ...

\hline Do. piltars, platforme, or posts for secondary stations, constructed or sepaired \& 2 \& 11 \& ... \& ...

\hline Do. miles of rays cleared . . . \& ... \& \cdots \& ... \& ...

\hline Do. do. pathway cleared \& \ldots \& ... \& \cdots \&

\hline Do. hill tops cleared of forest and jungle \& 3 \& \& \&

\hline Do. Secondary stations, the eloments of which have been computed \& 65 \& .
21 \& ..

\ldots \& ...

\hline Do. points fixed by traverso, the clements of which bave boen computed \& 1 \& ... \& ... \& ...

\hline Do. miles leveled over, gee para. 219 \& \& \& \& .

\hline \& \ldots \& \ldots \& \cdots \& ...

\hline Do. permaneut bench-marks fixed, see parn. 219 \& \cdots \& \ldots \& '" \& ...

\hline Do. preliminary charta of triangulation \& 1 \& 1 \& ... \& 2

\hline
\end{tabular}

(1)

$$
\begin{array}{c|c|c|c}
\hline & & & \\
\ldots . . & \ldots & \ldots & \ldots \\
\ldots & \ldots & & \\
\hline . . . & & & \\
\hline
\end{array}
$$

$$
\left|\begin{array}{cccc}
\text { Dulto } & \text { dilto } & \cdot & \cdot \\
\text { Na. } 7 & \text { Tupographical } & \text { Parly, }
\end{array}\right|
$$

Provios.	Bacale of sarees.	Aremin	Comit		Bunaxa.
North-Western Provinces	2.in. $=1$ nilo	1,581			(d) Thplinar.
	$4 \mathrm{in} .=1$ mile	128	4.295000		
	16 -in. $=1$ mile	1.683	2,93,408 1510	${ }^{185} 567(k)$	
Purjab	4 in. $=1$ mils	1,825	69,2626	3728 ($)$	
Bengal	4 -in. $=1$ mile	125	55,666 6		
					causstrial a.tio or.
$\begin{aligned} & \text { Honnhay } \\ & \text { Burruas } \end{aligned}$				$\begin{array}{rlrl}26 & 11 & 3 \\ 290 & 2 & 7 \\ 7\end{array}$	
	10,35	$8,99,13468$...	

[^36]PARTIES between lst October 1879 aud 301/ Seplember 1880.

DISTRICTS COMPLETED SINCE LAST REPORT.

J. SCONCE, Lieul.-Colonel, Deputy Surveyor General

APPENDIX.

EXTRACTS

HHOM
the narrative reports of the executive officers

IN CDADGE OF

THE SURVEY PARTIES AND OPERATIONS.

Entract from the Narrative Report, dated 24th September 1880, of Liedtenant-Oolonbl. B. R. Branflli, b.c., Deputy Superintendent, Surory of India, in charge Madras Party.

On the cessation of the autumal raine, the Madras Party proceeded to take the field, leaving Bangalore early in November, and reached the soene of operations by the end of the month.

I directed Mr. Potter to complete the remaining portion of the approximate series near Madras-seleoting two of the final stations with special reference to their suitability for circumpolar azimuth observations, as near to the Madras observalory and to the een as possible - and to build the necessary stations. At the same time Mr. Bryson was to devote himsell to building the stations and clearing the rays immediately in advanoe of the observing party until he should meet Mr. Potter, and the whole be completed.

I myself undertook the final obeervations with the 24 -inch theodolite and oommenoed the observing at Kaniyanúr
 H. S. on the 5th December, and continued without interruption, except from the long round-about marches, obliged by want of roads, and two or three bouts of rainy weather, until the work was finished at St. Thomns' Mount S. (the 15th station visited) on the 26 th February, having fixed 13 new principal stations and closed upon two other previously fised stations, oommon to the Madras Meridional and Longitudinal Series, Mávandur-Malaipêdu, by 16 triangles forming a hexagon and tro pentagons, covering 2,001 square miles, and advancing the series from S.-S.-W. to N.-N.-E., a distnnce of 68 miles to its terminus at Madras.

Two sets of ubservations for azimuth were talsen-at Injambakam sand hill on the coast line, 10 miles south, and at St. Thomas' Mount, $5 \cdot 6$ miles S.-S.-W. of the Madras observatory. Mr. Pogson, the Government Astronomer, was unwilling that an azimuth should be observed at the observatory, by whioh he thought his own pressing work would be reiarded ; and, notwithstanding Mr. Potter's earnest endenvours, no other suitable point could be found nearer than St. Thomas' Mount for an azimuth station, without incurring a heavier outlay in money and time than the object seemed to justify, the whole of the ground in and around the City of Madras being covered by lofty trees and private houses.

As soon as Mr. Potter had oompleted the approximate series, about the middle of Jnnuary, I directed him to prooeed with all speed to examine the ground between Pondioherry and the east flunk of the series, as he was already well acquainted with the latter, having selected the enst flauk stations himself the year before last. He very soon submitted what appeared the most simple and feasible project for oonnecting Pondioherry with the principal triangulations. He then moved on without delay to the larger and more important work of connecting Negapatam with the main series near Kumbakônam.

In this task be succeeded to my satisfaction, taking advantage of the lofty towers of the temples, by which alone the task could have been ncoomplished during the season.

The spires or gateway towers of South Indina temples, commonly called gopurams, are tall, ricketty briok structures, consisting of an oblong basement, usually of stone, pierced for the gateway, surmounted by a pyramidal spire of many storeys, tapering up to a narrow ridge, and profusely covered with stucco ornaments. They are seldom or never used except by bats and vermin, and the many floors or stages within them have been allowed to fall in, so thint access to the summit is dangerous, and, when attained, it is quite unsuited to observe from with a thoodolite. Mr. Potter displayed muoh ingenuity in overooming these difficulties by menns of temporary staging, loug lndders, and a portable striding platform, which he devised and carried with him, and by means of whioh he wae able to set up the $8^{\prime \prime}$ theodolite on seven gopurams, and thus complete the series.

On completion of the final observations at Madras, I hastened by your directions to the west const of the Peninsuln, to effect a oonnection between Colonel Lambton's triangulation, brought up from Capo Comorin, through Travancore and Cochin to Ponani, with the Malabar minor series, brought down from Mangalore to the same neighbourhood.

I had direoted Mr. Mitohell to effeot this conneotion when he was engaged on the Iatter series, but he failed to find Colonel Lambton's old station marks at Kurnid (" Kooruaud") and Anangnmala ("Annangamalli"). The station of Anangamala, however is identioal with Colonel Lambton's point, and I believe that Colonel Lambton's station of "Koornaud" was nt a point on the Kurnid bill, marked by a mound of earth, with whioh I have made a secondary oonvection. A moro thorough connection has been now made by my finding station \odot marks at Ponmala ("Punmalli") and Alattúr ("Allatoor"),
as also an old station platform on Machat ("Muohaut") hill, the centre of which I ocoupied. All three of the latter are probably nearly identical, if not quite so, with Colonel Lambton's stations, thus oompleting a satisfactory conneotion. It was now the end of Marol and the air so hazy as to be quite unfit for observing, but I determined to take the opportunity to effect a further connection with the tranigulation of the Nîlgiri hills.

When in charge of the Great Aro Series (in 1869-70), at the instanoe of the SurveyorGeneral, I was requested to determine points on the Nîlgiri hills to form a base for Colonel Saxton's minor trinagulation, which I accordingly did; but, owing to the length of the rays and the hindrance from cloudy weather, I was not satiefied with the results, though they were the best obtainable under the ciroumstanoes.

I am sorry to eny that, although I apent about a month upon this work, in very trying wenther, I was not very sucoessful, ohiefly owing to the sickness and consequent absence of my signalmen; still a oonnection has been made, and I think, from the approsimate reduotion that has been computed, it tends to show that my fears about the pointe laid down in 1869-70 were excessive.

After a oireuit of some 700 miles, from Madras to Bangalore, thence by the Great Arc to Cape Comorin, and back by the East Const Series via Ramnâd to Madras, the series has olosed with a emall cumulative error in latitude and distance, but with a larger one in longitude, azinuth, and height.

The mean olosing error in latitude is $0^{\prime \prime} 008$ or about one foot.

$"$	$"$	longitude	is	0.262
$"$	$"$	azimuth	is	9.212
$"$,	$"$	height	is	17.3^{\prime}
$"$	$"$	distance	is	0.72^{\prime}

the latter being equiralent to 0.027 feet, or one-third of an inch per mile.
This amount of olosing error is perhaps no greater than might have been espected. Indeed, considering the extent of unfavourable country traversed, I anticipated a much larger.

Extract from the Narratice Report dated 5 th November 1880, of Captain J. Hile, ,.x.,
Officiating Deputy Superintendent, 1st grade, in charge of the Enstern Frontier Series.
I left Bangkok on the 29th January, and next morning reached the small town of Phrapatom, where I had arranged to meet Mr. MeCarthy, who was working in its neighbourhood.

He arrived about noon, and I bad the satisfaction of learning that he had pressed on the work well during my absence. I may here remark that the Siamese, although they wish for telegraphic communication with British Burma, do not seem to care about rapid postal communication in Siam. For example, although Phrapatom (whioh is distant, as the craw flies, 30 miles from Bangkok) can be readhed through the creeks in 12 hours, a letter I wrote to Mr. McCarthy from Bangkols on the 15 th January (the day after my arrival), and which the ruthorities professed to send by express messenger, only reaoked him on the 30 th, as he came into the town of Phrapatom to join me. After a few instances of such delays, I employed my own men as letter-carriers The Siamese appear to have no conception of the value of time, and our chief difficulty oonsisted in overcoming their dilatoriness. They thought (and indeed appeared to hope) we ehould find it impossible to estend our triangulation into Bangkok neross the 30 miles of flat, wooded, and swampy country lying to the west of the city, and they were languid, to say the loast, in their operations to assist us. I am glad to say there were esceptions to the rule; and, as in my report on the previous season's work I had the plensure of expressing my acknowledgments to the Governor of Kaubooree, so now I beg to acknowledge the assistance given by the Governors of Naknochasee, Tacheen, and Paknand. Our thanke are due to those geatlemen for their help nod their hospitality. If the Assistant Governors and other minor executive officials with whom we came in contact bad been equally attentive to our requirements, the work would have progressed all the more rapidly.

During my short stay in Bangkok the weather had once or twice been clenr enough to enable me to get a good view of the surrounding country from an artificial eminence oalled Pinookhow Thong, whioh is ascended by external winding flights of stone steps and is surmounted by a srmall pagnda, and which is the bighest point of vantnge in or near Bangkok. From this raised position I was able to obtain the magnetic bearing of the Great Pagoda of Plirapatom (the largest in nill Siam), upon which I had placed a stntion the previous reason; nnd I nlso, while searching the western horizon with the telesoope, noticed, in a fortunate break in the far distant jungles, an objeot which appenred to me two thick to be the trunk of a palm tree, and which seemed to be more like a pillar or factory olimnor. I accordingly noted ita bearing, \&c. It nppenred to be from 15 to 20 miles distant, and to lie in a snuth-ensterly direction with respect to Phrapatom. I had henrd there was a tall climney belouging to n ruined sugar factory uear Nakonchasee, but it was supposed to lie more to the north. On going to Phrapatom I was fortunate enongh, after some time, to identify the object I had seen through the telescope at Badgkok, and which could only be distinguished at Illiapatem when the sun
fell upon it in one direction. It turned out to be the old sugar factory ohimney after all, the height of which from the ground I afterwards measured and found to be 83 feet. The problem of how to carry the trinngulation into Bangkok was thus solved. I caused a huge bamboo soaffolding to be erected round the chimney, and a timber platform with an arrangement for insulating and centreing the theodolite to be constructed and placed on the top, and our observations were duly taken there. The height above the ground of the stations forming the last triangle of the Bangkok Series are all considerable. The height of the chimney has just been given. The height of the Bangkok mark stone at Phookhow Thong is 110 feet according to naeroid observations of mine, and 115 feet by Mr. MoCarthy's measurement of the steps leading up to it. The station I placed the previous senson on the Phrapatom Pagoda was exactly 100 feet above the ground, while a station Mr. MoCarthy subsequently caused to be placed at a higher level, in order to avoid rny clearing (which with local labour would be an endless undertaking in Siam) is only 32 feet below the top of the spire, the altitude of which I oarefully measured the previous senson, and found to be no less than 347 feet above the mean level of the ground at the base of the pagoda. The height of 347 feet is that of the top of the masonry, and excludes the large metal ornament which surmounts the spire. Mr. MoCarthy describes it as being nervous work elimbing up the bamboo ladders to this lofty observatory. A pagoda being composed of one solid mass of masonry cannot be ascended from within. The ascent has to be made by means of bamboo ladders placed against it externally, and secured in position to iron pegs driven into the masonry. While the seaffolding round the obimney of the old sugar faotory was being prepared, the ordinary observations of the lines were being carried on elsewhere by myself and Mr. McCarthy. It will be recollected that I reached Phrapatom from Bangkoks on the 30th January. Throughout February and Maroh there was a great deal of thick baze, much nggravated by jungle fires, which obstructed the observations considerably. The people also were in some instances inclined to be obstructive. In one instance they went so far as to stake with sharpened bamboos the path by which one of the signollers was accustomed to go for water from his station, and the man was badly wounded in the foot. In another they secreted some large timber posts I had ordered from Bangkok for the construction of a station near the villnge of Po Hak. This station, which was on flat, low, ground, had to be raised in order that observations might be taken between it and the chimney station. Mr. McCarthy was consequently obliged to make use of the trunks of some small palm trees which grew near; but after spending much time and trouble on the station, and clearing a quantity of trees and bamboos in the direction of the ohimney, he was unable to open the ray. I was determined, however, that the chimney and Po Hak stations should be joined; and after a great denl of trouble, and the loss to us of much valuable time, the villagers, fearing they were about to get into serious trouble at Bangkok, suddenly gave up the missing posts to Mr. McCarthy, who quiokly raised his station to the requisite height, and obtained his observations. Such occurrences as these, together with the dilatoriness of the officials and people, and the uncertainty as to the fate of any letter or messnge entrusted to a Siamese, constituted our chief difficulties.

Extract from the Narrative Report of Major E. H. Steel., 8.c., in charge No. 1, Topographical Party, Gualior and Central India Survey, season 1879-80.
The triangulation only extended over 270 square miles; it was all very heavy ground, Hemarks on country triangulated. and mostly covered with dense juugle. Long parallel ridges running north-east aud south-west are the principal features; there are one or two fine, though very uarrow, valleys. The undergrowth aud tree jungle to the west will give the plane-tablers nuch trouble.
l'he country plane-tabled was, with little exception, of a very diffoult nature. Mr. Cornelius ground near the Dhebar Lake bund, and SubSurveyor Abdul Aziz had to the south and west of his board a small portion of level oountry; but it was nearly all covered with serub jungle and high grass. I should not omit to mention that the 120 square miles surveyed by Mr. Tate in standard sheet 94 were in fairly open country, with oue liigh range of hills called "Soora" and a few isolated ridges dotted about.

A good deal of the oountry in standard sheets 88 and 90 is comprised of bigh mountain ridges with very steep slopes, and whero the features die down iuto the lower ground, the drainage is esoeedingly iutricnte. When I looked down from Sisa hill in March on the lower ground, the leaves were off the trees, and the under-features were visible; the land then looked like a petrified stornay sea.

The long ridges of procipitous hills are crossed at very rare intervals by passable pasees; for instance, the sam Ghatu or pass is the only road passing from enst to west in a run of 28 miles aloug the great ridge or backbone of the mountains which termiuates on the Kulaliu hill overlooking the village of l'ol.

There were no furts, towns, or cities comprised in this season's work. The cantonment of Klerwara falls into the overlap of one mile, end will be surveyed aud described by No. 5 party. The largest villages met with in standard sleeet 88, were Madri, Juwass, Chnwand, Babalwarra, nud lhakhabdoo. This last contains a well-known Hiudu shrine. The villages of Shodudur and Klied liralimn, of the Muhi Kauta ageucy, fall in sheet No. 90; the former is the property oi a petty Rao.

The Som pass is on the road from Kherwara to Kotra; the ascent from the Som valley Passes, \quad is 700 feet, aud the descent into the Manpore valley to the west is fully 1,000 feet. This pass is just practicnble for lightly-laden animals; there is no other well-known pass.

The main road from Oodeypore to Kherware and thence to Ahmedabad runs through Roads. standard sheet No. 88; it is a fairly metailed road, is well bridged, kept in good order, and is quite praoticable for all arms. A road has been traced from the village of Pershad, on the above-mentioned main road, to the Dhebar Lake bund, above whioh there is an old palace, now just repaired. A fair road has been made from Kherwara to Pola, and thenoe to Ider. This road is, however, fast falling out of repair. A good riding track, practicable for baggage animals, has been traced from Madri to Kherwara by the Madri Rao; it is six to eight feat wide. Lastly, the track from Kherwara to Kotra is called a road; it passes, as I have aaid some fer lines back, over the Som pass.

The Súbarmati drains the oountry comprised in the western half of standard sheet

Rivers.

 No. 90 ; it forms many deep pools, but is fordable every mile or so during the cold weather, and in the rains, forms a stream 250 to 300 yards wide from bank to bank. The Som and Gomti, drain the country shown in standard sheet No. 88; the last-named stream receives the out. fall of the Dhebar Lake. These two rivers join just south of the margin in the south east oorner of sheet 88.The Bhils and Grassias have been desoribed already ; one point, however, struck me, Inhabitauts. which I do not think has been noticed before, namely the large size and fine look of the Bhil women relatively with the men. This point has, I believe, been noticed before in oonnection with eome other predatory tribes.

Extract fiom the Narrative Report of Captain W. J. Heavisme, r.e., in Charye No. 2 Topographicul Party, Khandesh and Bombay Native States Survey, season 1879-80.
The phyeical fentures of Khandesh are most pleasantly varied when compared with the dull monotony of the scenery in most Indian districts.

Khandeeh cannot boast of snowy peals or of the lusuriant vegetation of Lewer Bengal ; but the Sntpura Hills are senreely inferior, in point of scenery, to the lower ranges of the Himalayas. North of the Tapti Kiver one meets with forests which, though not extensive, hold trees worthy to rank as timber with those of the Terai, while hard by, on the edge of these forests, the banks of the Tapti in the month of January are plains of waving wheat.

Khandesh has in addition all the best points of the Deccan: plateaux 1,500 feet above sea-level, not wanting in shady trees, where tent life is pleasant up to the end of April; ghâts of grand blaok preoipices surmounted by columnar basalt in fantastio forms rising to a beight of 4,000 feet; well-irrigated valleys of black soil growing magnificent crops of wheat and sugar-cane; uplands near the sources of the Y'anjhra River, where there is pleasing woodland scenery, and the river, sbadowed by fine old trees, flows over the rocks in rapids and pools where an occasional small mahsir may be tempted with Ω fy in the evening. As a contrast, there is the low-lying malarious country of the Dángs, with low hills almost concealed by grass jungle and tree forest-a country whioh is considered deadly to the European until February, and which, by that time, is so dried up that it is difficult to obtain decently good water ; a country where an occenional clearing and a few Bheel hute are the only signs of habitation, but where the frequent call of the painted partridge somewhat compensates for all these disadvantages.

Such are the diversities of country lying west and north-west of Dhulia, that have been met with in the country plane tabled this senson, within a few days march of ench other, and within an area of 30 miles of longitude by 70 of latitude; but the olief portion of the work exeouted embraced the whole upper portion of the Pinjhra Valley.

and for the first 15 miles of its course flows eastwards through an upland country nearly 2,000 feet above sea-level. The fine old mohwa and mango trees grouped about the borders of the river and its tributaries-the large, undulating expanses of grass, broken here and there by patches of wheat round a group of Bheel huts, or by low hills clothed with tree junglemake up a pleasant sylvan sceue, which is green and refreshing to the eye even in April, and is rendered all the more striking because in such marked oontrast to the severe black basaltic precipices and peaks which form a background to the south.

The uplande are but sparsely inhabited; there are no large villages; Bheel huts are scattered about here and there near the patches of oultivation, or near water, as the latter becomes rather scarce towards the end of March, except in the main stream.

The bed of the river in these upper reaches alternates between sand and rock, with a considerable fall averaging 30 feet a mile, the water here and there cascadiug over the rooks.

Pimpniner, the taluka town, is the first place of nay importanoe on the river, and although out of the upland country, is nearly 1,700 feet above sen-level. It is a poor looking place of about 2,500 inkabitanta, but thare is a considerable expanse of wellirrigated black soil round about it, and from a few miles above Pimpalner the llow of the river is perennial.

From Pimpalner to Dhulia (50 miles) the river still flows eastwards; its bed is of rock throughout, with the considernble fall of 830 feet in this distance, or about 17 feet a mile. The river is thus eminently suited for irrigation purposes, and, from some distance above Pim. palner, masonry dams, often having the appearanoe of being 100 years old, stand across the river at every three or four miles, the water being led off in wide channels to irrigate large traots of black soil, in which magnificent crops of sugar cane and wheat are grown. This ground appenrs never to be left fallow: no sooner is one crop off the ground, than the land is ploughed and a now crop sown, wheat and sugar-caue generally alternating; and in a good year, such as this has been, the sugar-cane mills are in coustant work, day and night, for some six weeks, in all the villages on the banks of the river.

The chief tributary of the Pánjhra is the Kán, which joins the river about 28 miles west of Dhulia. The basins of these rivers extend from the narrow, lofty range of hills on the south, dividing Khandesh from Násik in about latitude $20^{\circ}-45^{\prime}$, to the high table land to the north, on which the Kundabairi Ghát and Hhamergarh are situated, in about latitude $21^{\circ}-7^{\prime}$, and is bounded to the west by the Sáhyádri Hills, which overhang the Dang country near the meridian of 74°.

The Afanyya Tungya Hills.-This narrow rocky range, which runs east and west near latitude $20^{\circ}-45^{\circ}$, separnting Khandesl from Násik, is a spur of the Súhýdri Hills, and has all the marked characteristics of the trap formation, such ns fine black precipices, three and four hundred feet in height, while the peaks of the hills rise from three to four thousand feet above sea-level, in masses of columuar bnsalt which frequently takes the most fantastic shapes, resembling buildings and monuments on a Titanio scale.

The two most remarkable hills of the range are known as Mangya Tungya, and are about three-quarters of a mile apart. Rising some 2,500 feet above the Pánjbra Valley, they are visible from very long distances, and a near approach to them impresses one with their massive grandeur.

From the south, or Násik side, these two hills rise in quadrangular pyramidal forms, with rocky precipitous sides, stepped at intervals to a height of 1,500 feet above the plains. They are here connected by a narrow saddle, the southern face of which is a precipice having the appearance from below of a wall of black rock some 400 feet high. At either end of the saddle the hills still rise some $5 \overline{0} 0$ feet higher, the pyramidal forms being more strongly marked than they were below, and more frequently stepped, till each culminates in a column of basalt 200 feet in height. It is diffioult to imagine anything in nature more typical of the monolith rising from a pyraraidal base, with whioh arohiteots have mede us familiar. But here the scale is colossal, and so much the more magnificently graud.

The basaltic columns which form the summits of these hills are quite inaccessible. A terrace, partly natural, partly artificial, bas been formed round the western one, which on the eouth side is only just wide enough for a single man to pass along, but on the north side is about 10 or 12 feet wide and 330 feet long. On this side five temples, or rather chatris, have been built in the shadow of the rock. There are also ou this side three temples and two water-tanks, all excavated in the rook. These three rock temples appear considerably older then the chatris, and may originally have been oommenced by Buddhista; but the inseriptions, as well as the oharacter of the figures and ornament, show that they were finished or oonverted by Maráthás.

The faoe of the rock above the terrace is studded with figures of gods and goddesses of various sizes-altogether, within and without the temples, 400 figures were oounted.

There are two ways up the hill, on both of whioh a number of steps are out at intervals, where the rocks are most precipitous, and without these steps, or the use of ropes, an ascent to the temples would be impractionble. I ascended by one route end descended by the other. I did not count tho steps going up, but in coming down there were 570 ; most of them were out out of the solid rock, aud some were built up, with here and there a low parapet wall, and at the corners, where the steps zigzagged, one rather failed to appreciate the grandeur of the precipice below. Near the battom of the hill there are two small, rock temples, evidently Buddhist, in fair preservation. Altogether a vast amount of labour has been expended on this bill, which appears to be worth the notice of the Archwological Survey.

Pisul Lill.-Pisul is another hill in the same range, with a history. Standing 1,500 feet above the surrounding country, its sides are as precipitous as those of Mangya Tungya, but its summit is a plateau about half a mile long by a quarter in width, and is a natural fortress.

Such a combination in nature seems seldom to have esoaped the eye of the predatory Marathá. He would be as safe there from any ordinary attaok as the eagle in his eyrie, and could swoop down at pleasure on the dove oots below.

The only appronch to lisul is by n uarrow gorge on the south side of the hill. This was protected by severnl cross. walls, the ruins of which still remain. In the rocky sides of this gorge, store-ronms and water-tanks are excavated. Water is still deposited in considerable quantities in the latter, but is much fouled by bats. There are also catohment bosins for water in suitable spots on the top of the plateau.

Notwithstanding the precipitous nature of the bill sides, it appears that the edge of the plateau was still further strengthened by walls here and there. There is but one
building remaining - a small house which is still in fair order. The Mahomedans have loft their mark of supremany in a fine gothio arohway, standing erect amidst the debris of old walls and houses.

Torons.-Mr. Horst, in last yenr's report, desoribed most of the taluka towns in this season's work; and in referring ngain to some of these I shall be careful to avoid repetitions.

Nandurbár-latitude $21^{\circ}-22^{\prime}$, longitude $74^{\circ}-17^{\prime}$, population 7,000 -is situated between two low ranges of hills, which nearly surround it. The position from a sanitary point of vien is about as bad as it could be. The site was probably selected with a view to protection from incursions, as the numerous old remaius of walls along the hill-tops tend to prove ; but as water is very scarce within these limits, the site could hurdly have answered this purpose well. Fifteen per cent. of the inhabitants nre Mahomedans-a docrying remnant of the descendants of the Mogul dynasty. Their principal mosque-the shrive of Sayat Sháhádava Alladin, who was killed in a battle near Nundurbár-stands on the western extremity of a low range just outside of, and about 70 feet above, the town, and forms an admirable lendmark for miles around. It is of good proportions, and overlooks a fine tank, on the embankment of whioh there are thiok groups of large banym, semel, and tamarind trees, while in the coldweather the waters are well covered with fowl, and under certain nspecte this combination is eminently pieturesque. The mullas of the mosque, who state they are very poor, instead of whitewashing the mosque with brushes in the ordinary way, have adopted the ohenper plan of dashing the whitewash in pailsful over the building. The result is that the arohed recesses, the cornices, and the general tracery of the mosque, are fringed with stalnctites producing a most plensing and artistic effect, suggestive, even in the warm sunshine, of snow aud icicles.

A oonsiderable quantity of teak timber passes through Nandurbar, about 4,500 oart-loads paying octroi duty annually. On one market day I saw as many as 400 eartloads, but this is an unusunl number. A cart-load sells at about Rs. 7 to Res. 15 ; thin poles cost 4 annas each; those about 15 feet long and 6 to 8 inches in diameter, Rs. 2-8 each; and timber from which beams 9 or 12 inches square could be cut, cost about Re. 1 a cubic foot. This timber comes chiefly from the Sígbára estate, north of the Tapti.

A good deal of timber is oriployed in the construction of the houses in Nandurbír, many of which are substantinlly built of two stories. with tiled roofs. The woodwork is generally carved, sometimes elaborately, and nearly always with very good taste, by men from Guzerat.

A large trade in wheat has been done this year by Banjáns between Nandurbár and Surat, the harvest having been very plentiful throughout Khandesh. The married Banjára women adopt a fashion hereabouts, which I have never seen elsewhere: the sári is worn hanging down over a piece of bamboo about 18 inohes long, projecting from the back of the head, thus Loving rather the appearance of a fool's cap, and resembling the steeple cap worn by ladies in England towards the end of the 15 th century.

The talukn town of Pimpalner and the petta town of Nizámpore are insignificant iu size, aud with nothing remarkable about them.

Balsána Temples.-At the small village of Balsína, about ten miles north-east of Nizámpore, there are several small temples of a stylo known as hemadpathi, built during the dynasty of the Gouli kings, which appear to have escaped the vandalisra of sects and conquerors. Unfortunately they were built of stone (trap), not thoroughly crystalline, so the weather has played sad haroo with the external figures and ornament.

The figures in niches placed in a belt round the walls of one of these temples are $2 \frac{1}{2}$ feet in beight, which is larger than I have seen bufore ou a temple of this style, and many of these fgures are in fair preservation. The iuterior of this building is amall, the height from the floor to the top of the dome being ouly $15 \frac{1}{2}$ feet, but it is in excellent preservation. The figures are unmutilated, and, blackened as they are by the action of time and of colonies of bats, harmonise well with the simplicity of the ornament on pillars, cornices, lintels, and jambs, which, agaiu, are in suoh perfect keeping with the straight lines of the massive pillars and corbelied stonework, as to remind one strongly of Greek art. This little temple is quite a gem, well worthy of the attention of the Aroheological Surves. It is at present devoted to the popular Hiudu god Lingum, but has escaped the desearation of red paint.

Manufachure of Cutechu.-Small encampments of Bheels are not unfrequently met with in the forests, engaged in the manufacture of catecha, which is chiefly sold to ohew with the pán-lenf by natives. The superintendent of the manufacture was ganerally a bunya who paid n small royalty to Government. The process is simple. Chips are cut from the heart of the khair tree, and stewed in small pipkins for several hours; a turbid, orange-colored fuid is thus produced, depositing a substance the color and consistency of thiok strawberry oream. This is subsequently dried in the sun, and brenks up into pieoes muoh like nodules of dark red earth. In this form it is sold in the bazers

General description of the country friangulated by Mr. A. G. Wratr, Sureeyor, Fourth Grade, Khandesh and Dombay Native State Surcey, season 1879-80.

Thr triangulation of the past senson comprises a portion of Khanderh lying between the meridian ${ }^{2 n^{\prime \prime} b^{\prime} y^{\prime}}$ and south of latitude $21^{\circ} \cdot 0^{\circ}$ and up to Hydrabid boundary. Starting from the side Sátmála to Walwari, a series of secondary triangles was run westwards, olosing
on the side Danwar to Sirsala, both of the Khanpisura series of the Great Trigonometrical Survey.

The triangulation embraces portions of the following talukns:-Pachora, Erandole, Jamner, and Nasirfibid of the Khandesh district. Of this tract three-fourths may be snid to consist of well-cuitivated country, and nbout one quartor of low, undulating hills. That to the south of Nasiríbíd and on the right bank of the Girna river cousists of low hills rather thinly corered with babul and brushwood. The tnble-land of Dhunor, on which is situated the Great Trigonometrical Station of Dauwar, lies about ten miles south of Nasiríbid village. It is about 12 to 14 miles in extent. The fall to the north and enst is very gradual ; that to the south and west abrupt, the fall measuring nbout 700 feet. The portion to the west of the Girua, ond between that river and longitude $74^{\circ} 15^{\prime}$, with the exception of a srall range of hills lying three miles south-east of the town of Einndole, called the Powarthála plateau, is well cultirated, and consists of numerous, large and well-inhabited villages. The country south of Pachora and along the Waghur valley is also well-cultivated. To the north of Bhargaon and east of Argaon villages is n low rauge of hills runuing north and south, ou which is situated the Great Trigonometrical Station of Walwír:.

The chief rivars passing through the portion triangulated are the Girna, Waghur, Anjni, Titur, and Hiura. The Girna, the largest of these, flows eastwards by the large village of Bhargion; it then turns northwards and flows through the low oountry and plain into
 higl range of hills separating Khandesh from the Nizam's dominion. The Waghur flows northward by the villages of Páldhi and Pohar, nad is a running stream throughout the year. It is a tributary of the Clapti. The Titur and Hiurn join the Girna-the former about two miles enst of Bhargáon village and the latter north of Bholeswar and east of Utran villages. The village of Bholeswar is situated at the juaction of the two etreams.

Erandole and Pachora are the chief towns of the talukas of those names. The former is situated on both banks of the Anjui and on the high rond between Malegaon and Bhusáwal; the latter is a smaller village, but is well known on account of the railway passing through it. It is situated on the left bank of the Hiura.

Bhargaou village is situated on an island in the Girna river. It is about six miles west of Pachora. A good metalled road connects the two villages. Bhargíon is a peta or sub-division of Pachora taluka.

The products of the country tringgulated are of various kinds. The soil in the plain is extremely fertile. It is a rich, black clag. On the hill traut every available spot is oleared and brought under cultivation.

From Dhulia, the capital of Khandesh, there is a high road going east to Jamner, and passing by the villages of Parola, Erandole, and Musáwad. Another road from Dharangán meets tuis one a few miles east of Erandole. Both these roads are bridged the whole way.

Starting from Nasiríbid there is another metalled rond going south to Jamner, whioh passes orer the Dhanor plateau and descends two miles north of the village of Neri. The road from Dhulia to Jamner, already desoribed, meets this oue half a mile west of Neri village.

Ertract from the Narrative Report, dated 3rd Norcmber 1880, of Lalbutenant-rodonel C. T. Haig, r.e., Officiating Deputy Superintendent, 1 st alrade, in charge Guzrrat Party.

On reference to the accompanying index ohart it will be seen that the Sabarmati crosses sheet 5 from north to south, and that the Hathmati joins the Sabarmati in this sheet. All west of the Sabarmati is Baroda territory, nad with the exception of one British village, all in the fork of the two rivers is Máhi Kanta tertitory; and, excepting one Máhi Kanta village, all south of the Hathmati is British territory. The greater portion of the adjoining plane table of sheet 24 is British ; the remainder is Máhi Knuta.

The banks of the Sábarmati and Háthmati rivers were great obstructions owing to their being broken up, sometimes to a distance of a mile from the river into a reticule of precipitous, tortuous ravines. The watershed west of the Sábarmati lies very olose to the river, from less than one mile up to three miles from it; and west of the watershed the oountry falls very very gently down to the Rum of Cutch. The Sábarmati flows between steep banks, nearly 100 feet high, and the general run of the watershed is only a few feet higher than the top of the banks; and so, although the drainage slope is so narrow, it has but a gentle deolivity. West of the watershed the country is in many parts very undulating; but the features are without any regular formation, and could only be properly shown by rigorous contours. The drainage is so precarious that there are large areas which are really not drained at all; but in a copions monsoon the tanks are enlarged into lakes, oalled "Bharits." On acoount of this lack of drainnge the drinking-water is bnd, and in the hot weather it beoomes so impregnated with saline matter that it is deleterious to henlels.

The oountry of sheet 5 is fairly populous nad well oultivated, parts of it are woody; but the trees, thongh no hindrauce to the oultivation, are to surceying; and there is an aren of about 200 square miles over which thern is no triangulation, but which had to be prepared for final survey by traversing ; nnd therefore over this area there are no heights, but as the country is very flat their absence is not a very serious matter.

The principal towns in sheet 5 are Visnagar, the head quarters of a talukn, or, as it is etyled in Baroda territory, a máhal and a post town where there is a Wainatdur or Mamletdar. It has a population of nenily 21,000 , and in the same máhal, Walnn and Wasai with populations respectively of $5,9+0$ and $\overline{0}, 12 j$: the post town of Vijapur, the head quarters of another máhnl, with a papulation of 8,880 , and in this máhal Ladol, with a population of 4,632 . Besides these there are in these two málals 20 towns with populations rauging between 1,500 and 3,000 .

On the banke of the Báthmati is the post town of Ahmeduagar, once a fine oity but now a town, with a population of 4,461. The walls are still in a sound state, though considerably out of repair. It was built by Alhmed Shaw in A. D. 1426, and is a plaoo of considerable historical interest. It now is part of Edar, the priucipal of the Máhi Kanta States. There is a broad straight rond from Edar (in sheet 23) to Ahmednagar, and thence through Paranty to Almmedabad. Just alove the city of Alumednagar there is a fine masonry bund built in 1875 by the Irrigation Department. It is 1,016 feet long and 64 feet high in the centre, aud oonverts the river above it into a magaificent lake, several miles loug, whioh supplies a canal that irrigates the country round Parínty.

In the forls between the Háthmati and the Sábarmati is the town of Ilol, with a population of nearly 4,000 , the chief towu of one of the Mahi Kanta States ; and near the northenst corner of sheet 5 is a large Edar village, named Jídar, with a population of 1,600 ; but excepting these two nod Ahmednagnr, all the villages enst of the Sábarmati in sheet 5 , and in the one plane table of sheet 24, have populations under 1,500 .

The country in sheet 33 and the south-west quarter of sheet 32 is mostly diffoult ground to survey. It is very muoh cut up with watercourses, the most tortuous that I have ever seen ; and as their banks are thickly wooded. their sinuosities could not be laid down by intersection, but compelled the plane tabler to follow them olong their entire course, causing great delay. The average number of plane table stations per square mile of the respective plane tablers in sheet 33, ranges from 22 by Mr. D'Souza to 53 by Labshuman Shitaram. In easy country I have had to insist on the plaue tablers not having less than six per square mile, so that it will be gathered from this how intricate the grouud was.

The drainage of sheet 33 is from east to west. The river Tlapti, with its tributary, the Virakhári, the Kim, and the Amríwati, a tributary of the Narbada, are the chief watercourses. I have stated them in their order from south to north. The watershed between the Amráwati and the Kim is a well-marked elevation from almost any point of which a fine view of the country on either side is obtainable, but south of the Kim the country is hilly and jungly affording cover for tigers, of which one or two nre generally killed there annually. The eastern half of sheet 38 is very unhealthy in the oold-wentlier, malnria being very prevalent, and it was therefore not commenced till the hot-weather; but there was also a good deal of fever among the native establishment working in the western half during the cold-weather.

The taluka town of Mándvi is in sheet 33, but as the shest is not completed, I will give the details of the towns and their population in my next report The south-west quarter of sheet 32 contains portion of the Ankleswar taluka of the Broach collectorate, a portion of Baroda territory, and part of the Rnjpipla territory, one of the Rewa Kanta States. This will be published on the 2 -inch scole, showing the British territory in detail and the Foreign territory in ekeleton. The Bombay, Baroda, and Central India Railway crosses this section, the station of Ankleswar being on the northern margin, and Panoli station near the southern and western margins. There are no large towns or villages in this section, the largest being Jitáli, with a population of 1,345 , situated close to the northern margin, about the middle of the section.

Sheet 16 was also a very laborious piece of work. It is a small area, but it is important from its oontaining the large Gaekwári taluka town of Navsári, population 14,218, and the British taluka town of Jalalpor, population 2,188, which are olose together on either side of the Bombay, Baroda, and Central Indian Railway. It also contains the railway station of Amalsad, and the Gaekwari town of Mora, population 3,528, with ite adjoining village Bili, whioh together give the name to Bilimora railway station. Besides these there are the towns of Matwad, population 4,392; Abrama, population 3,566; Bigri, population 3,141 ; and seven villages with populations between 1,500 and 2,000, and, of course, many smaller ones.

Nuveári is on the eetuary of the Purna river, whioh admits of the largest native craft coning right up under the town. Into this estuary flow numerous creeks, and these and the nuuldy expauses through which they fow caused great trouble to the surveyors; but not more than the rest of the ground in the sheet, which was so broken and woody that it admitted of little sketohing, but obliged the plane-tablers to put up thoir plane-tables as often ns the ground in sheet 33. This will not appear to be esactly the case from the tabular statement of the detail of topography, where the average number of plane table stations per aquare mile ranges from 22 by Nilkunt Vithal to 35° by Wasadeo Gonesh, but these arerages include the work on the mud, in which the number was less, than on the terra firma, though it was nove the less tedious.

The oountry surveyed in the Dangs lies immedintely south of thant previously surveyed. It is as rongh and wild as to its features as any yet surveyed, but it scemed more healthy aud was mere thiobly populated thau the country to the uorth. Malarious fever seems to rary in prevalance with the bamboo, and in this southern area there was less bamboo jungle thau we have get enoountered. The surveged area contains Wásurna, the obief
village in the Dangs of that namo, but otherwise an insignificant place. The eouthern portion of the Dange is muoh more capable of cultivation than the northern portion. In the northern portion forest clearances are scattered aboul the country, but in the portion surveyed this year there are many large areas which have been cultivated, though not nearly all the oulturable land is taken up in any one year. The population may, I suppose, be taken as a measure of the actual cultivation, nud the area under survey this year was much more thickly populated than the parts we bave yet survegel in previous seanons; but population scems such a very precarious itern of Dang statistics, that I abstain from any definite statements. A village may be largely inkabited one yenr. One hundred and fifty ie a large population for a village in the Dangs, and nearly or quite deserted next. There is a grenter abundance of bamboo jungle iu the northern than in the sonthern Dangs, and the bamboo seens to hinder cultivation. In comparing between north and south I refer only to the western half of the Dangs. In the enstern Dangs there are large open tracts more populated and cultivated than any we have yet met with in the topographically surveyed aren.

The season's work in the Dangs is mostly confined to the valley of the Ambika (which, however, in the Dange goes by the name of "Ibla") and its tributaries, the Deoldár and Pánetha. The Khápri valley also euters into the nurth-east portion. The Khápri flows into the Ambika, but outside the Dangs. The greatest height on the watershed between the Ibla and the Khápri in this season's work is Humbália Hill, 2,210 feet above the sea.

Extract from Annual Report on the operations of the No. 10 Revenue Party, Deccan Toyographical Survey, for season 1879-80, by Colonbl J. Macdonald, Deputy Superintendent.
The country surveyed to complete sheets 14,18 , and 22 is under the western aspect of the Ghats, whose supporting spurs are built up in a series of plateaux cut up by innumerable deep ravines. The slopes are almost universally forest grown. Around "Kasgam" there are a few square miles of open country. The hills bristle with the old hill forts, among whioh "Tuugi" and "Rajmachi" nre most noticeable.

Amongst the streams which drain this western fall of the Ghats, the "Kalu," which rises at "Harrichanderghur" and flows almost due west, is the greatest. The "Shai," which rises at "Ajuba," flows south and falls into the Kalu at Khapri. The "Khandeshi" and the "Chilar" rise on "Bhimashauker," near the village of "Tembri." On the bauks of the "Chilar" is an ancient oave excavation; the open tace entrance, 40 feet in width, is supported on two massive pillars with earyed capitals cut out of the rock. The depth of the cave is about 21 feet. No trace of inseription exists.

The "Thul Ghat" incline of the Great Indian Peninsular Railway has been surveyed in sheet 14 ; also the old Agra road from Bombay which crosses the railway at several points. This is the only first class metalled road in that portion of the district. There is no available road for wheel traffio along the Ghats between the "Thul" and the "Bhore Gliatt" inclines of the Great Indian Peniusular Railway. A road over the "Malsej Ghât" is in oourse of construction ; commencing at Callian it passes through "Murbad." following the old "Brinjari" track, and enters the rioh valleg of "Junnar" nbove the "Ghats" in the Poona district. The "Nana Glât" road, a few miles south of the new "Malsej Glat" rood in process of construction, is the next in importance; it is ouly adapted to paok-oarrying animals. When the Mahomedan army that entered the "Decenn" arrived before Deoghur in 1294, they found outsidn the walls a vast number of bags of salt whioh bed just been brought from the "Konkan" over the " Nnaa Ghat." At the top of the Ghat there is cut on the rock the oldest insoription which has yet been discovered in this part of India.

Salt was evidently then, ns now, the ohief article carried from the Konknn to the upper lands. There is also a pack bullock track over "Bhimasanker," but it is very little used as it is long and difficult. Coolies carryivg head loads can seramble up and dowu the Glâts here and there. The best foot track is up the hill side at "Kapoli."

The aren surveyed in sheet 75 oomprises talukns "Penn", and "Alibaugh" of the Colaba Colleotorate, and a detached portion of the "Bhor Stata." The Gliâts here approach within thirty miles of the sen board. The intervening country is very rugged, crossed with ranges of hills, which in many oases are of considerable height, raugiug from 1,000 to 2,500 feet. The slopes aud intervening valleys are mostly , oovered with a strong, growth, obiefly of teak. With the exception of the "Kharapet" lands around "Washi," and a nerrow strip along the seaboard, the country is forest olad. The wild mango trees are especially graud as trees.

The fncility for transport afforded by the numerous tidal creeks, which permeate these valleys very numerouely, is takon full ndvantage of in supplying the markets of Bombay with "wood and jungle.produoe, annongst which the fruit of the "Hirda," known in trade as "Myrobolam," is chief. Rice is grown in vast quantities along the "Kharapet" lande, and full advantage is taken of every epot of oultivable land, in all the "Konkau" valleys nud pintenus. Along the senbord there is a dense vegetation in coooanut, betelnut, and plantain cultivation. Fruit and vegetable gardens, also a great system of fish-drying, complete the iudustry of these thickly, inhabited rillages.

The "Amba" river rises under " Khaudala Ghate," pases " Nagotnn," where it is crossed by nn ancient Malnomedan brilge below which it is navigable for vessols of 30 to 40 tous burihen. It exteuds as a tidal cbanuel entering the Bowbay harhour. On the banks of this
river, near the village of "Unheri," are situated two hot springs frequented by sufferers from paralysie and rheumatic affections. The temperature of the water is about 130° Fabrenheit. The water has a sulpharous taste. The flow is great and constant, there is never any palpable difference in the volume of water.

The "Bhagwati" rises at "Bondia Donger;" it passes the large town of "Penn;" and is navigable to a point about n mile and a half from "Penn" at the village of Antora, that is to say, it is navigable when it merges into a tidal creek.

General Description of the Konkan.

The Konkan may be described as the traot between the Ghats and the sea, from latitude $20^{\circ} 20^{\prime}$ north to the border of the Portuguese territoty of Goa, a distance of more than 300 miles, and its average width is about 45 miles. Its area may be roughly estimated at 14,500 square miles.

The North Konkan is well wooded. It is intersected by many rivers and arms of the sea. Where there is arable land it is bighly cultivated and very populous, but much of it is rooky and rugged.

North of Rombay and Salsette the general character of the coast is sandy and shallow. South of Bombay the coast is precipitous. Behind the rocky islands are deep tidal rivers which form commodious harbours. All along the const the rocky eminences are crowned with forts, which of old plnyed an importnat part in the long succession of wars whioh for centuries were continued between the Mnhomedans, Portuguese, Marathas, and, during the early part of last century, the piratical hordes led by Augria.

It is only within the last few years that roads fit for wheeled vehicles, have been made in many of the districts south of Bombay. Only eight roads (one under construotion) oross the great Ghât wall between the "Konkan" and the " Peccan" plnteau. The Tanne Colleotorate has roads through most of its talukas, and it benefits by the lines of railway which, oommencing at Calcutta and Madras, meet at Callian.

The numerous rock exoavations so common in the "Konkan" show that the Budhists had an infuenoial following here. In the island of Salsette they abound especially. The caves at Kanheri form so larige a clister, that they could afford shelter to many hundreds of people. The exonvations amount to 102 , but these do not represent all the immense labour expended on these rock-cuttings. Each group of oaves has its separate reservoir outside; couches and benches are cut out of the rock. Across the slopes of the hills, steps are onrved out for the convenience of intercommunication between the different halls and temples. Though greatly disappointed in the beauty of the oaves, still I think they are worth visiting. it is supposed that their construction dates from obout nineteen centuries ago.

Near "Knnheri" are the caves of "Mandapeshwar" and "Magathan;" these are "Brahmnnical." Tho caves at "Mandapeshwar" were utilized by the Portuguese, who set up an alter in the large cave and used it as the crypt of a church built over the cave.

The oaves nt "Kuda" and "Mhar" are Budhist. Nunserous small caves are found here and there. In these, as at Elephanra, the soulptures and inscriptions were destroyed and defaced by the Portuguese in the sixteenth century, when as partial iconoclasts they routed out the hordes of jogeres who inhabited the enves.

There are but few remains of fino buildings showing the traces of Mussalman occupation. At Callinn, where thore is still a large Mussalman population, there is a fine mosque; and if its dome was in proportion to the rest of the building, it would be arohitecturally remarkable. It is situated on the edge of a splendid tank, round which are many tombs. In a rather large building is the tomb of Mortabha Khan, which dates from 1695 A.D. The fine old bridge at Nagotna, built in 1582, deserves notice; but as it is barely ten feet in width between the parapets, two carts oannot pass eaoh other on it, and it would be almost useless for heavy traiko. It is strange that there are not more traces of a governing race which built like giants and finished liko jewellers, considoring that they attached oonsiderable importance to the trade with Erypt, Persia, and Arabia, and that they were supreme in power from an early date in the fourteenth century to the close of the sixteenth.

Of the Maratha rule, dating from the middle of the seventeenth century, the great hill forts nre left as their heaviest marks. Though some show traces of Mahomedan building, it is evident the Mussalman thought less of fortresses than the Marathas. All are construoted on the anme priuciple. The top of the fortified hill is surrounded by a bastioned vall. If any outwork is necessary, it is connected by a carved passage with the body of the work. The gatewny is almays in the part must difficult of access. Some of these forts show results of stupendous labour in rock-cuttings. In all a small shriue dedicated to "Hanuman" is found inside the main gate.

Somo notice should be given to the masonry built fort at "Khardeh" in the "Jamkhed" taluka. A equire, enclosing nbout ten acres of ground, surrounded by lofty bastioned ralls and a deep ditch with walled counterscarp. The walls are eight or wine feot in thickness at the top. and sufficiently thick at the base to admit of ensements being built in them ns sheltar for tho garrison. Inside the fort is a mosque built by "Sirdar Johan Khan," killadar. The fort was ereoted, as announced on an insoription, on the outer doorway of the fally pinst: "In cood time and in good days this building has been orected by Rajah Sultanji Nimbinar, the Deshpaudias, the Patels, and the Saukars of Kasba Sheopatan, pergnonnh Jamkhed, Sirknr Almedmagar, tributary to the Bááshá Takte Buniyad (the Badehnh of Aurangabad), and was completed on the 2jth of Sabau 1156, Hijiri," (1740 A.D.)

Khardeh itself is a town whioh wns onco the seat of n very important grain and salt trade, now deteriorated to one-fourth of its former valies and it is also notioeable ne having been the scene of a great battle between the tronps of the Nizam and the Peshwe in 1796, in whioh the latter were victorious and ever after maintained their supremacy in the enstern districts of Almednagar, until their authority passed into the British power after the battles of Poona and Kirki.

All this country shows denudation of its forest trees. Every effort is being made to promote jungle growth; but centuries must elapse ere the injury to the country caused by the folly and greed of one unthinking generntion can be quite forgiven by nature. It is my opinion that the future of the enstern districts, as far as their agricultural prospects are conoerned, is most gloomy; and it is certain that the rainfall in the upper basins of the Godavery and Krishan rivers will be most precarious for many years to come.

Extract from Anmual Report on the operations of the No. 5 Recenue Party, Banda and Mirzapur Distriets Survey, for season 1879-80, by Colonel. F. C. Anderson, Deputy Superintendent.

It was impossible to employ European agency alone on the 93 square miles of hills surveyed on the $16^{\prime \prime}$ and $4^{\prime \prime}$ scales during the past field season; and as it is a work of time to train even the best native surveyors to judge degrees of slopes to ordinary acouracy, I devised the following plan by which to carry out, as far as practicable, the instructions contained in the Surveyor-General's ciroular No. 21 of 24th January 1879.

Along a line taken from the base to the top of the hill, contour lines at vertical intervals of ten feet were measured by means of a 10 -foot rod and cross staff, to which a plumb was attached. The plumb gave to the cross staff the properties of a rough level, and enabled the field gurveyor to plot on his plane-table the points marked a, b, c, d, e in diagram Z,

between which the distanoes were determined by chain measurements, as shown in dia. gram Y. The object of the cross staff and rod was not so much to attain unnecessarily extreme accuracy, as to train the field surveyor by giving him his first fer coutours accurately ploted on his plain-tnble, and by this menus to obtain a more correct iden of the number of contours required for the scale in use for the particular bill on the survey of which be was eugnged. At first the field surveyor was directed to measure up lines from the bese to the crown of the hill, as shown in diagram $\mathrm{Z}_{\text {, }}$ ten chaine apart, and to fill in his oye contours betweon each pair of measured lines. As practice engendered confidpuce, the distntuect from measured line to mensured line, between which the eye contours were filled in, were increased to 20 and 40 chnins.

Statistical and Geographical description of Syriam Toonship, District Hanthauaddy, British Burma. By Captain J. E. Sandrman, Deputy Superiutendent.

 east longitude, and oovers an area of about $8 i 00$ square miles, of which $7 母 3$ square miles have been surveyed up to date. It is bounded on the north by the Pegu Township ; on the south by the Gulf of Martaban; on the east by the same Gulf and the Sittoung river; and on the west by the Rangroou and Pegu rivers.

It is divided into the following Ciroles or "Tikes": -

Geogimplical position nud extent.
Divisiun into circles and kwins.

Number of Total
lwins. aren
(Acres.)
19,72960
71,84684
73,665.61
25,078•48
34,521.20
46,50694
32,907.76
66,028.73
45,348-48
37,154.01
54,603.75

A cirole is a revenue division, and has its own "Tike thoogyee" or Officer to collect the revenue. As some of the circles are rather large, it is possible they may be still further divided ore long.

The aircles are sub divided into "kwine." A "kwin" literally means a plain. It used to be the unit of nssessment in the old days, all land in one kwin having been assessed at the same rate; but the Settlement now in progress divides a " k win" into four classes of soils, the assessment on which varies from Its. 3-8 to. 12 anuas an acre. A "kwin" is therefore only a convenient division of the oircle, and corresponds to the Indian "mouznh" or village. The "kwin" is still further divided into fields, generally of a regulnr shape, where the contours of the land do not interfere. The field forms the "survey unit," and a group of these is held by eaoh cultivator direot from the State.

The aspeot of the 'Township is a vast alluvial plain, with hardly a tree in most parts,

$$
\begin{aligned}
& \text { The Aspect. } \\
& \text { Konrdnn } \\
& \text { soil. }
\end{aligned}
$$ the only land-marks being the monasteries nt the different villages, which are lofty buildings and are generally surrounded with olumps of tall bamboo and plantain. The creeks whioh intersect the plain are fringed with low mangrove jungle, which is fast disappearing as cultivation spreads. T'o the east of the Township along the cea coast, the jungle is still a few miles wide in parts, owing to the tract being inundated by the sea at high tides and being unculturable; but the silt yearly deposited is raising the land eveu here

The one break in the general aspect is the low laterite ridge, in its highest part not more than 200 or 300 feet above the sen, which first appears at Thanhlyeng-myo, and, running parallel with the Rangoon river through the Thau-hlyeng myoma and Kyouk-tau oircles, disappears at the village of Kyouk-tan, the last seen of it being the rocky bars in the Hmaw-woon creek, which appear high and dry at low water, and which cause the navigation of this important channel to be very precarious. It would help to develope trade, were a passage to be formed through these recfe by blasting the rocks. This "konedan," or high land, is evidently the last enstern spur of the Pegu-yomn. It is curious that the eastern slope is abrupt, whereas the western slopes are gradual, and disappear in the plain almost imperoeptibly. Along the sea coast on the south of the Hmaw-woon circle, is a "dune" or snady ridge, n fow feet higher than the oountry inland, formed by deposits of silt. It is covered with jungle and is hardly perceptible

The soil of the Township consists of olays ohiefly, and of sands, varying from rich black olays to laterite sand aud gravel.

Almost the sole product of the Township is rice, or what is locally termed by all
Products. Europeaus "paddy" or unhusked rice. Captain Parrott, the Settlement Officer, in his report mentions the Burmese saying that there are 102 varieties of paddy; and as be colleoted 16 kinde in two villages, he thinks there may be some truth in the sayiug. He divides paddy into two descriptions-(1) ordinary, (2) glutinous paddy. The latter will not stand boiling, but has to be cooked by stenm or in a bamboo, in which it is sold; it is very eatisfying, and eaten before the cultivator goes to his labour in the morning. Of ordinary paddy, the Burman considers "meedone" the best, and "bawgoot" second best. For export purposes, "nga seing" is the only paddy grown in the township; this is a hardy kind, and preferred by the purchasere. Where cultivated, the entiro plain is a paddy plain; but there are a few other products. Many edible plants are found in the fields, whioh the Burmese eat.
"Thekkeh," or thatehing-graes, is obtained and sold chiefly by the "Shans."

The "danee" palm, which grows along the creeks, yields leaves used for roofing houses which are sold at from Rs. 2 to lis. 5 per 100 leaves. The fruit and the juice of this palm are also sold.

The produote of the "Kone-dan" vary from those of the plain. Mueh of the land is taken up as so-called " garden" land. Some of these gardens consist of nothing but jungle, with a fer jaok and mango-trees, but othors are cultivated and yield pineapples, plantaing, guavas, \&o. They are all valuable, however, and are assessed at Rs. 3 an acre. The Innd on the lower slopes and font of the Kone-dan produces a variety of orops, the ohief being pawn, or, as locally called, "betel;" the others, potatoes, roselle, pumpkins, onions, and ohillies, \&o. The pawn gardens here are not covered in as they are in Bengal, and the plant grows to a much grenter height.

The Shans are great gardeners; but I noted that Madrassees are taking up much land at the foot of the Kono-dan, and it was in one of their gardens that I noticed potatoes.

The mode of paddy oultivation is by sowing. The plough, which is like a huge rake

$$
\begin{array}{ll}
\text { Modes of culivation. } \\
\text { Prices. }
\end{array} \begin{aligned}
& \text { in oppearance, is first used after the early showers } \\
& \text { of the rains; and after several ploughings have } \\
& \text { taken place, the seed, which is not oarefully }
\end{aligned}
$$ chosen being very often mixed, is thrown broad-cast over the field. No weeding is done, the seed being left to take care of itself. No manure is ever used ; but I have noticed that where manure has by ohance fallen, a clump of paddy strong and high will grow, and sometimes a field will be dotted over with these clumps, which are readily seen. Only the ears of the paddy are reaped. The Burman does not stack the straw, which is burnt down afterwards, and forms the only manure the land gete. It is eaid the Burman reaps only the ears of the paddy, because he is afraid of anake-bites ! The threshing-floor is generally in some oonvenient field, the oxen that tread out the corn being left unmuzzled. The winnowing sieves are made of bamboo, and are hung from tripods of bamboos and ewung backwards and forwards, the wind blowing away the ohaff.

For the last few years, very bigh rates have ruled for paddy in the Rangoon markct, and the average price this year is about 100 baskets or bushels for Rs. 90.

The prices of some of the other products are given by Captain Parrott. Bamboos, which are of three kinds, are sold from his. 3 per 100 to Ke .1 each; pineapples are two pice each. A jack fruit is sold from four annas to twelve annas. Mangoes from Re. 1 to Rs. 6 per 100.

Sometimes, when the rains are very heavy, some of the fields become flooded, and the gield is small; but as a rule there is not nuch loss by floods in this township.

The land is held direct from Government, and except in grants made under the Waste

Tenuro.
Waste land grants. Land Rules of 1839-41 and 1863-65, there is no middleman. In the former case the cultivator enjoys fixity of tenure, in the latter he is merely a tenant-at-will of the grantee. Of these grants there are fortunately only 20 in the Syriam township, and it is possible that one or two of these may be resumed. The total area of these grants is 13,457 acres, or 21 square miles.

Modes nud ratcs of asqessment.

The new Settlement in progress classifies the land into four classes, on whioh the rates are as follow :-

Averasere rates.
$\begin{array}{cccc} & \text { Rs. } & \text { A. } & \text { P. } \\ & 3 & 6 & 0 \\ . & 2 & 5 & 0 \\ . & 1 & 3 & 0 \\ . & 0 & 12 & 0\end{array}$

The rate for the clase varies slightly aocording to the "Settlement tract" it is in. Garden land is classed high, about Rs. 3. The yield of first-class paddy land is about 40 bushels per acre, and it diminishes to 10 bushels for the poorest land ; with oareful oultivation, the yield might be doubled.

The new Settlement will raise the revenue oonsiderably, owing to the rates being Incrense in revenue owing to setllement and survey. enhnnced, and because the Survey has revenled that the area on which revenue was formerly paid was greatly in defeot. In the six circles which have come under Settlement, the Survey has shewn the increase in cultivation to be 23.91 per cont., and the increase in revenue will be $36 \cdot 22$ per cent.

Beaides the assessment on the land, the oultivator pays a 10 per cent. cess by the new Other taxen. Act, and a copitation tax of Hs. $2-8$ a year if a bachelor, and $\mathrm{R}_{\mathrm{s}} .6$ if a married man. "Tari" and coconnut palms are aseessed at four annas each. Next year, all fruit-bearing trees nre to be assossed at six ninnas a tree.

The holdings in the township being large, averaging, as far as has jet been ascertained,

Labour and its remuncration.
own fields, but largely employ foreign labour, either Burmans from Upper Burma, or
gangs of ooolies from Madras. Coolies for ploughing are paid about Rs. 30, and reapers about Rs. 24 a month.

The Burman generally does his own onrting. The paddy is either stored in granaries in the village to be sold hereafter, or is sold to the owners of paddy boats in the nearest oreeks.

The agricultural implements are the plough, the larrow, reaping hook, and winnowing sieves.
prioe of a buffalo is Rs. 100 , and of a bullook
Agricallural inplementa and stock.
The cattle are very fine. The average prioe of a buffalo is Rs. 100, and of a bullook
70 or 80 ; they oome from up-country; the mortality among them is great, owing to Rs. 70 or 80 ; they oome from up-
the Burmane taking no oare of them.

There are no rules regarding grazing, and no tracts bave hitherto been set apart for the Grazing.
Grazing lands. purpose. The oustom has been to send the onttle to graze under a cowherd, who receives payment in paddy. It is a strange sight in the rains to see a very emall Burman boy astride on a large buffalo out in the "Iswins," his sole olothing being a large bamboo hat to proteot him from the rain; he has generally a large cheroot in his month, nud thus he sits the livelong day, while the buffalo quietly grazes. A boy is mounted on every buffalo to prevent the animnl from injuring the orops; and he eeems quite happy to spond his day thus.

The new Settlement Department is setting aside grazing tracts in every "kwin," wherever land is available, in which no one will be able to take up land for cultivation.

The Rangoon and Pega rivers, which border the towuship, are navigable for sea-going

> Principal rivers and creeks. Yos. Swamps. vessels as far as Than-hlyeng, and the latter for very large craft as far as it borders on the township. 'Ihe Hmaw-woon creek is 670 yards wide at its mouth, and is navigable for 30 miles for large paddy boats; during the rains, paddy bonts ean go right through the oreek to the sea, or to the Sittong river.

The other large oreeks are the Baw-ohoung, navigable to Thatag-kwin, Kama-ka-lokechoung, navigable as far as Kama-ka-loke, Padn-ohousg, Khanoung-ohoung, Mayaw-ohoung, Adoon-choung, Poogandoung-choung, and Kawet-olooung, which are all navigable for distances depending on the state of the tides. During the rains, boats can go right through from one to the other.

All the creeks in the township are tidal, many of them overlowing their banks at very high tides. Besides those mentioned by name, the country is interseoted with numbers of smaller creeks, many of whioh are silting up gradually. The banks of most of the large oreeks are very high, and it is only at high water that any view of the country oan be seen when sailing along.

When creeks have silted up and are no longer navignble, they are termed " Yo's," and appear as mere depressions without high banks, some of them being after a time cultivated.

In the Met-ka-than and A-goon circles there are considerable swamps.
The only road in the township is a very indifferent one along the orest of the "Kone-dan," Roads. and runs from Syriam to Kyouls-tan. It has been partly metalled, but is in a very negleoted state.
The creeks therefore are the highways of commerce. It is true, in the dry weather, after the paddy is all reaped, fair-weather cart tracks are made from village to village; but these are only used to a limited extent, and parts of the township are not fully tapped for paddy till the rains set in and fill the smaller creeks.

There are no wells except at the villages at the foot of the "Kone-dan," beonuse in the

Wells and water-sapply.

 plain, the water, which is a fer feet below the surface, is brackish and unfit to drink. Drinkingwater is therefore stored in tanks. There is everywhere a scarcity in March nnd April, some of the villages in A-goon being deserted till the rains for want of drinkiug water.The rainfall is about 100 inohes, as far as I enn ascertnin; but there has never been a rain-

The rainfall.
 Climate.

 gauge regularly kept until lately. Showers begin in April, and the regular monsoon bursts about the middle of May. There is hardly a shower from early in November till April. The temperature is very equable. In the dry weather it ranges from 60° to 94°, and in the rains from 75° to 90°, the menn in the dry weather being about 80° and in the rains about $82 . .^{\circ}$ A oold weather is unknown; the nighte are slightly obilly in January. Thick fogs prevail in the early mornings in the dry season.There are various descriptions of boats to be seen on the oreels. There is the large lionts. Burman paddy boat with a carrying capacity of from 800 to 2,000 bushels of rice. There is the smaller Burman boat, in which are carried plantains, vegetables, and fruits of kinds for sale. 'There are Chittagonian or "kalal" boats, manued by the antives of Chittagong; these chielly carry passengers. There are Burman oanoes; and, lastly, the gaily-colonred Chinese sanpans. Except the latter, of which the construction is differeat, the others, from the paddy boat to the tiny canoe, are flat-bottoned, the lower part being hollowed out of a eingle \log, the lines of the boats being very fine. They all carry one square snil.

The larger boats have beautifully carved ehairs on the high stern, ou which the steersman sits; at the bow there are grotesque figureheads of birds and auimals, and the same nlso sometimes at the stern. Owing to their flat bottoms the boats can make no way against the tide ; therefore it is that a fleet of every description of bont dnily collects in tho paddy season at the mouth of the Lmaw-woon and other creeks, and as tho tide begins to make,
all weigh anohor together. If there is no wind, the simultaneous creeking of the anrs and chaunt of the boatman are henrd ; but the most pieturesque sight is when there is a breeze, and they all set sail together. Some of the sails of the smaller boats are made of discarled silk garments, and the bright colors look pretty.

The capital of the township may be said to be Than.hlyong-myo, commonly known

> Tuwns nod principal villager. as Syriam. It is merely a long straggling village with few good houses in it, and is a very dirty place. It is situated on the left bnak of the Pegri river, at the foot of, and at the northern extremity of the Kone-dan, and is the site of an old Portuguese and Dutch settlement, the remains of an old fort and of a Christian monastery being still in existence. It has a population of about 2,000 souls.

The other principal villages are Kyouk-tan, on the Hmaw-woon creek; Kama-ka-loke, on the Kama-ka-loke creek; Khnnoung, on the Khanoung creek; Pyin-magan, on the Pyinmagan oreek; Tada, on the Tseng-ma-knu creek; Thone-gwa, on the Hmaw-woon oreek; Thatay-lswid, on the Baw creek; Poogandoung, on the Yoogandoung creek; Pagoo, on the Pegu river; Kayin, on the Kayin creek; Pada, on the Pada creek; Ok-kan, on the Ok-kan creek. In these villages many of the prinoipal houses are built of teak. Pada is the site of an anoient town, and there are traoes of ruins. Kyouk-tan is not a large place, but it derives its importance from the head-quarters of the Δ ssistant Commissioner in charge of the Sub-division.

Kyouk-tan and Thone-gwa are laid out in squares, but most of the villages etraggle along the oreeks, one or two rows of houses on each bank. The houses are never built on the ground, but are raised on piles of wood or stout bamboos, the sleeping room being higher than the front veranda, which is the family sitting and dining room. Uuder the house the pigs and poultry live.

In villages bnilt on creeks liable to inundation at higl-water or in the rains, the principal roads are made of a single plank raised on cross sticks, or of bricks laid on edge or enrthenware jars sunk in rows touching one another. Every village has its "Phoongjee Khyoung" or monastery; these are often picturesquely built like pagodas, or having three roofs superposed.

The principal classes of the inhabitants are Talainge, Burmese, Shans, and Karens;
Classes of inbabitants. the two former are in by far the greatest numbers, aud they constitute respectively 43 and 41 per cent. of the total population.
The following table gives the numbers by circles, the total population of the township being 66,866 , or about 79 per square mile:-

Crbclibs.					Talaings.	Burmans.	Earens.	SLans.	Clinese.	Mahomedans.	Hiudoos.	English.	Total,
Than-lilgeng-myon		\cdots	\cdots	\cdots	2,573	1,039			$\stackrel{4}{4}$	281			5,992
Kyouk-taing-byin			\ldots	\ldots	-1,193	li,171	238	1,088	${ }_{10}^{2}$	37	${ }^{2}$	\%,
A-roon …	\ldots	1,727	8.100	433	413	39	12	1013	...	-
Yoon -..	1,790	2,114		2,718	35		29		$8,6{ }^{\text {B }}$
Kyouk-tan ...	\cdots		...	\cdots	159\%	4, 1106	625	1,6ist	15	35	30	2	7 7-29
$\underset{\text { Proo-ken-doung }}{ }$...				4,076	3.111 1.110		S33	47	245	\ldots	8,591
Mer-ka-thon ...	\ldots	...	\ldots	\ldots	2.1515	1,170	0	$1 \downarrow$	2	\cdots	3		10,
Pagoo -		\ldots	2,604	2,032	00	16	3	,		0,363
Kadoon-baw'.	,
				\ldots	29,719	27,310	1,995	7,597	190	335	473	2	ce,8ie

The population is almost entirely agrioultural. Living so near Rangoon, the people

Mannere nid customs.

are adopting many lagglish customs. They use kerosine lamps and matches; English beds aud mattreses ; chnirs with long arms, sprawling in which, the Burman, in very little clothing, his logs tatooed black from the waist to the knee, his body tatooed red, and with a large oheroot in his mouth, is a quaint sight. Near him mny be seen his gaily-dressed, wife, literally "his better-half,", engagod in helping to husk the paddy for the day's consumption or in other domestic duties, but geverally busy when not engaged nt her toilet.

Here, as elsewhere in Burma, rice and dried fish (ngapee) and chillies, or a little vegetable, form the diet of the people.

The large villages have one or two shops in them, generally kept by Chinamen, in which are sold biscuits in tins, sardines, piokles, matohes, twine, artificial flowers, umbrell hs, and so forth. Soda-wnter nud lemonade are sold at stalls in the streets. There is also generally one liquor shop and an opium farm, kept also by Chinamen; at the former, beer brewed in Rangoon is sold, as well as infamous brandy.

All the peoplo smoke, men and women, and even very small children. Their cheroots are six inches long, and are minde of clopped wood and tobacoo rolled up in a lenf; but they also smoke the cigar wado in the ordinary manner. 'rhey chow betel to a great extent.

They ent out of lacquered trays and bowls, but also use China oups and plates, bed-room crockery sometimes being used at the meals of a large family. No such thing as "enste" is known in the country. On one occasion, when one of the Surveyors asked for a light, a Burman standing by hasteved to the fire of an Oudh classie cooking
olose by to get it, and when he saw the man indignantly throw away his food, he was surprised indeed.

There are many quaint oustoms amongst the people which we noticed, but most of these will be found well desoribed in Forbes' "Burmn." I may mention that at Kyouk-tan, when small-pox was prevalent, the entire population used to turn out in the evening at dusk with gongs and etioks; with the latter, they began to beat the thatoh of their houses; the gongs gonnded, guns were fired, crackers were let off. and the din was so great that at first, the onuse n ot being known, it wes most alarming. We ascertained that the "nats," or evil spirits, were being frightened away!

Fu neral ceremonies were pretty sights at Kyouk-tan. One wou'd have bardly thought it
Funeral cermonieg. men dancing and singing, and playing on musical instruments. 'The villagers, chiefly wornen, in their brigh toolors, walk behind. A phoongyee heads the procession, a member of
"That noble order of the yellow robe,
" Which to this day standeth to help the world."
In every villa ge all the inlabitants seem to have something to sell in a corner of their
Village bazni s. front verandahs, and in the evening a little bazar is formed in the main street. A few oheroots, plantains, ngapee, chillies, ©o., form the stock in trade. Some stalls have also a table, laid out with cups and saucers and tea. The buyers are the boatmen and passengers going up and down the oreek on which the village is situated; the young women and ohildren of the house are the vendors, the men apparently being content to lie on their backs smoking all day, and only turning out in the evening to talk and firt with the village belles.

In the whole township there is very little to be got to supply the wants of a European. There are no sheep or goats, there is no bread, nor vegetables worthy the name, no milk or butter, as Burmans do not use either; and the poultry the people will not sell, as they rear them to exchange for oloths with traders who oome from Rangoon and go up all the small oreeks in boals. The fowls are very fine, and are re-sold by these men in the Rangoon market nt Re. 1 each.

At Than-hlyeng there is a colony of Mahomedans, who have a ziarat on the Kone-dan, and a mosque. They are descendants of the families who oame from India with the Portuguese, but they cannot talk anything but Burmese ; and, except in dress and religion, are quite Burmanised.

The education of the boys is chielly oarried on by the Phoongyee sohools. Females Eduaction. are taught to some extent by nuns and old men.
The forests consist of mangrove and willow on the creeks and along the sea coast, Forests. Pyeimma (Lagerstroemia regina), Thitsie, Danyeng, Edible caterepillar. mangoes, and bamboos of several varieties.

A caterpillar is found in the jungle which, when oooked on tonst, is exoellent, and tastes like marrow tonst.

Some of the "Phoongyee kyoungs," or monasteries, at Syriam, and those at some of the villages up the Hmaw-woon and other creeks, are

Remarkable buildingg -
Kyoudga.
Pagodas. worthy of note. They are generally large buildinge on very stout piles, situated in a clump of fruit-trees or bnmboos; the ground around is kept beautifully clean, and very often there are "izaiats," or rest-houses, around the kyoung for the weary traveller.

The prinoipal pagoda is Kyaik-khouk, the one on the Kone-dan, four miles south of Thanblyeng. There are pagodas wortly of mention also at Than-hlyeng itself and at Kyouk-tan. At the latter, on the reef of rooks about the centre of the Hmaw-woon oreek, is a small pagoda, which is a conspiruous feature in the landscape. On the right bank of the creek is also a pagoda of great antiquity, although not of any beauty or size.

The golden pagoda of Kyaik-khouk is very hendsome, being 130 feet in height nnd built of blocks of laterite. It is $\mathbf{1 , 2 0 0}$ feet in oircumference. It is said to have been built before Christ, and that there are some relics of Gaudama buried under it. It is in charge of a Committee of Elders. The view from it is extensive, and it can be seen from every part of the townehip.

There are several amall pagodas along the orest of the Kone-dan, and the ruins of many more, some of which must have been vers large.

For each circle (or tike) there is a revenue officer called the "tike thoogyee;" he is Burman oficials. solely responsible for the revenue due to Government.
The "kyee-dan-gyee" is the head man of the village; he pays no capitation tas for whioh he performe various minor duties; he is also the village police officer. The "goung" is the cirole police officer, who receives a salary of Rs. 10 a month.

The health of the people is good. In a few villages small-pox is prevalent generally Health. from Maroh till the rains break; but there is little fever or any other sickness, and the peoplo
may be said to be very healthy.

Litigation and crime.

There is a certain amount both of litigation and crime, but not excessive. The people are
inveterate gnmblers.
The roligion of the people here, as elsewhere in Burma, is Bhudhism. Monier Williams Religion. says :-"It cannot be said to be a religion at all, but a system of duty-morality and benevolenoewithout a real deity, prayer, or priost." There is no system of caste, and all man are considered equal. They believe in transmigration; they attach importance to charity, self-denial, and meditation. A daily occurrence in every village is the string of yellow-robed "phoongyees" or prieste, who pass through the streets with bent head, begging their daily bread.

Arnold desoribes this scene thus-
"A yellow cloth over his shoulder cast
"Girt as the hermits are, and in his band
"An earthen bowl, shaped melonwise, the whioh
"Meekly at each hut door he held a space
"Taking the granted dole with gentle thanks,
"And all as gently passing where none gave."
The manufactures of the township may be said to be almost nil. A little salt is manuManufactures. factured at Theelwah, a village in the Myoms circle on the Rangoon river, by evaporation, and at a few other places. Some "thamaines" (women's costumes) are manulantured and sold by the Shans.

At Thone-gwa, on the Hmaw-woon creek, there are a number of sawpits. The timber comes through from the Sittong during the rains.

The ordinary Burmese weights are in use, one viss being equal to 3.65 fbs . The English land measure is adopted, the acre being
Weighte and mensures. divided into 16 annas, and the anna into 12 pie.
It has been mentioned that the creeks are the highways of commerce. The most Obstructions in creeke. important, and by far the largest of these, is the Hmav-woon-choung. But unfortunately at Kyouk-tan, the reefe of laterite rooks, whioh have been already mentioned, greatly impede the navigation. The Government would confer a great bencfit on the people if these rooks were blasted end a chaunel opened out. Kyouk-tan cau now only be passed even by small passenger boats at high-water, and even then the navigation is diffioult.

There are regular ferries at Syriam, Kyouk-tan,

> Ferrios.
> Bridges. Thonegwa, Weh-gyee, Nyoung-lay-bin, Dayzat; the leases of the ferries for the year being sold by auction.
The oreeks, if not very wide, are bridged at all the larger villages by wooden bridges for foot passengers. These, aftor the maner of the Burmese, are never repaired, and many of them are in a very riokety condition, being generally unsafe for ponies.

At the villages where there are no ferries or bridges, small canoes, often in a leaky condition, are lept by the village authorities for the convenience of travellers. I orossed in one at Pa -da-wah, which fillod as we orossed, and we just landed in time, for in another moment it must have sunk.

Many of the creeks and "yo's" used to be fisheries let out by Government, the lease Figheries. being yearly sold by quotion; but they have receutly been all abolished, as when the oreeks were banked up, the country beonme flooded, and a great deal of harm to cultivation ocourred.

There are no postal arrangements in the township, worthy of the name. There is a

> Postal arrangements. post-office at Kyouk-tan under the charge of the Assistant Commissioner; but as Burmens are employed ns runners, the delivery of the daily post from Rangoon is very irregular.

Cattle markets are beld at Kyouk-tan and Nyaung-bin. Captain Parrott mentions that

Fairs and markels.

 the largest transactions in paddy take place at 'Ihatay-kwin, I'ha-koot-kone (Ywathit), Nyaung-thoone-bin, and Joung-joung-ja, these being the termini of the lend routes from the in-lying k wins.The only large fair beld anuually in the townehip is the religious festival at the Syrian Pagoda Fenst. Kyaik-klouk pagoda. This fine golden pagoda, situnted on the Kone-dan about four miles south of Syrinm, has already been mentioned. The yearly festival takes place at the end of Janunry, or early in February at full moon. It lasts for four or five days. I could get no estimate of the numbers assembled, but there must have been, I suppose, ten or fifteen thousand people at loast. Many of the langoon traders send out representatives, and the inhabitants of the township make this the occasion of their yearly purohases of such artioles as ononot be got in their villages. As our camp was in the vioinity, I was able to visit the fair, and found it one of the most strange and amusing sights I have ever seen. Amidst the trees and bamboo jungle at the base of the pagoda, and on three sides of it, was laid out a miniature town, with narrow but regular streets, lined with booths made of a frame work of light bamboos, and covered with coloured oloths. Behind the maim streets were regular
enoampments of the pilgrims and holiday-makers. The stalls were occupied by Chinese sellers of various aweets and jellies, Burman enting-shops, Chinese boot-makers, Madrassis and Hindustanis selling every kind of miscellnneous article; various peep-shows, in which photographs of London were being passed off as those of Mandalay. In the forenoon there were boxing matohes. A ring being formed of the surging mass of human beings, two equally matched boxers came to the front, having their loins tightly girt; they first made their prostrations to the Assistant Commissioner and to the "nat," or evil spirit of the place; they then stood up, and, having made a fow defiant antios, proceeded to business. Low musio accompanied their movements, and as they warmed to their work and blows came thick and fast, the drums got louder, till finally the noise was deafening. It generally ended in the oombatants being locked in each other's arms, nad thins coming together to the ground, when they were separated by the umpires. Whenever blood was drawn, the match was at an end, and more prostrations having been made, the boxers were ench presented with silk oloths. Then two more would stand up, and the fun lested for some hours.

In the afternoon we visited the pagoda platform. Here was a most picturesque sight. The long rows of steps and the platform were orowded, with women chiefly, gaily and most tastefully dressed. The tightest of silk drosses, the colors of which are beautifully blended a white linen jacket with a delicately colored silk handkerchief thrown over the shoulders, the shining blaok looks gathered up behind, with one or two bright artificial or real flowers stuck in at one side, the face done up with a white oosmetic or powder-is a description of the fair devotees. They would kneel down in rows and make their devotions in an earnest manner, then light a taper and plase it as an offering, or else their good action would consist in sticking some gold-leaf on the pagoda, or they would offer a few flowers, oranges, and rice. Then they would pase on to listen to a singing minstrel, or blind fidler with a monkey, who had been all this time performing close by on the platform of the pagode. Under the full moon, the picturesque crowd, with the golden pagoda towering above, was a sight not to be easily forgotten. The evening was devoted to visits to the Barmese plays or "pooeys." There were several going on, as well as some puppet pooess, or marionettes. The posturing of the women was extraordinary, and the puppets move most naturally; but the thing that struck us most was the enjoyment of the Burmese crowd, and the hearty bursts of laughter at every joke.

Than-hlyeng is the site of an old Portuguese
History and antiquities. settlement. Herecan still be traced the ramparts and bastions of a fort, which includes within it an area of over 20 acres; the walls were built of laterite and earth.

The Gazettcer says, according to Burmese tradition, the town was founded in 587 B.C. At the beginning of the 17 th century, the king of Arracan took possession of Pegu, aided by the Portuguese, and to them he gave the town of Than-hlyeng, which they fortified; but they were driven out again a few years later.

In 1631, the Dutoh were allowed to establish a factory at Than-hlyeng, whioh they retsined till 1677. Then an English factory was established, but the dete of this is unknown.

In 1740, the Peguans expelled the Burmese, but did not molest the Europeans.
In 1743, the Burmese re-took the town, but were driven out again immediately by the Talaings, who burnt the factory, this time to the ground.

Nothing now remains of these English and Dutoh settlements, except the remains of Kaine. an old ohurch (which must have been a grand building), the foundations of the fort, and walls
of a fer monastery buildings.
The Gazetteer' eays:-"The ohuroh was erected in 1749-50 by Father Nerini. In plan it consisted of a single nave ornamented with arches and columns both inside and out."

Hardly was the labour of constracting the churoh ended, when Father Nerini took in hand the building of a roomy house as a residenoe for the bishops and the missionaries. This old ruin is very substantially built with thiok walls of small but well-burnt bricks; but trees are growing out of the walls and breaking them down, and it is a great pity that nothing has been done to preserve this ruin, whioh is such a grand monument of the earliest Ohristian enterprise in Burma.

Cultivation is extending very rapidly in the Township. Mr. King, Assistant Survegor,
Cullivation extending mentions that when out surveying in Met-ka-than Circle, he met armed parties of Burmans exploring for land to make clearances; the men had come ohiefly from the Pega direction. A-goon is all oultivated except the belt of jungle bordering the sea, and in this Mr. King saw trees being felled, and the Burmans extending their cultivation.

The parts of Met-ka-than and A-goon, whioh are now a swamp, were evidently once

Traces of former cultivation.
remains of tanks to this day.

Notes by Captain T. H. Holdich, r.e., Officiating Doputy Superintendent of Survey, on the voute to Kabul through the Lughman Valley.
Tres course of the river Kabul, which, from its general direntness, would form the natural highway between Jelalabad and Kabul, is unfortuaately confined for some miles of its
length between precipitous walls of rook whiols offer little or no chance of successful roadmaking along its banks. There are four of these defiles (locally called tangis) between Kabul and Jelalabad, and hitherto their existence has been sufficient to divert the greater portion of the traffio of the country into the Gaudamak-Jagralak route, involving the passage of the Jngdalak pass which forms the connecting link between the Karkaclaa range, which is in itself a spur of the Safed Koh and tho Seah Koh, which is really au extension of the Rarkacha enstwards. Any route from Jelalabad to Kabul, running south of the Seah Koh, must either pass over the Jagdalak kotal (6,200 feat above sea level) or over some other pass of the Karkacha or Seah Koh, higher than that of Jagdalak. The disndvautages of this route, both politically and strategically, are matters of history; its disadvautage as a traffio route lies mainly in its gradients, which must either be excessively steep, or else the route must be lengthened until the rise of the Jagdalak kotal is spread over a sufficiently long line of ascent.

But it happens that only one of these defiles or tangis interferes with the adoption of the river route for a considerable distance (about 30 miles) beyond Jelalabad, and this gorge, which is known as the Deronta defile, is hardly two miles in length.

The Deronta gorge leads into a direct road to Kabul. which runs nearly due west along the northern base of the Seal Koh range, south of the river, for about 20 miles through the Lughman valley, and thence over an easy pass (called the Adrak Badrals) to Kata Sang and the Tezin valley. The whole of the Gandnmak-Jagdalak route is thus turned, and with it all the difficulties involved in the ascent of the pass, the dangerous nature (strategically) of the pass itself, and its disadvantageous position as regards the neighbouring Ghilzai tribes. The Lughman route, too, is shorter and flatter, involving much less wear and tear on any transport system which may be worked along it.

About the end of Januunry a working party of Madras Sappers and Miners, supplemented by cooll labour, was employed in making a practicable rond over the Deronta hill, west of the river (which takes a southerly bend through the gorge), so as to avoid the double passage of the river across two awleward fords. The hills east of the river trend down to its banks in low spurs of soft saudstone rock, much mixed with water-worn boulders, which offer very little difficulty to the passnge along its banks of laden baggage animals of all descriptions; so that it has been usual to cross the river to the left bank, and theu re-cross in order to euter the Lughman valley. On the western bank the Seah Koh range comes to an abrupt conclusion, breaking up into rooky limestone spurs which terminate in precipitous cliffs right over the river bed. It is over these cliffs that the road was made. The orystalliue limestone rook of which they are composed proved supericially soft and friable, and the three and a half days labour bestowed on the road resulted in a pass which was practioable for lightly laden baggage animals of all sorts, except periaps that olass of camels taken from the ploins of India, whioh have been collected for trausport in the hills of Afghanistan. This pass, as first laid out, rose to a height of about 650 feet above the plain; but an alteruative road has been surveyed and is in course of construction, rising only 300 feet, and another even is contemplated, which will pass almost at the river level round the base of the oliff, and be suitable for any sort of traffio.

From the top of the Deronta pass the Lughman valley, backed by the rugged hills and snowy peake of Kafiristan, is sprend out iu a grand paooramn to the north and west, and appenre at the first view to be a well-irrigated, highly oultivated plain, full of flourishing villnges. protected by the usual square-built bastioned mud forts. This is the nature of all the districte called Kuj, iu which are situated the forts of Asmatulla Khan, and it is also the case with that part of Lughman, north of the Kabul river, whioh is watered by the Alishang below its junction with the Alingar ; but by far the greater part of the Lughman district, from the immediate neighbourhood of the Alishang westwards to the Bad Pakht hills, consists of a dry, sandy plateau, oovered with boulders and patches of coarse grass, deeply intersected by ravines and nullahs, and utterly unproductive. About a mile rad a half from the northern foot of the Deronta pass is the village of Futteh Mahomed or Fatiabad, and a little beyond it is a small garden of cypresses and palms, laid out with much care and teste, near the fort of Bahram Khan. These are all some distance north of the foot of the Seah Koh, and in the midet of well-cultivated ground, apparently open and traversable, but in reality so deeply interseoted by water-cuts for irrigation as to be almost impractioable for onvalry. The high rond to Kabul passes between this cultivation and the hills, and for the first 10 or 11 miles runs nearly level, and is already a well defined opeu road, owing to the amount of Kuchi traffio whioh has lately passed along it. For about 300 yards it skirts the banks of the Kabul river so closely as to require some additional width to make it practicable for wheeled traffio.

The first village on the road is Sals Khan, almost exactly 10 miles from Asmatulla's fort, a mmall unimportant little hamlet built at the end of a sandstone spur, whioh extends from the Soal Kolh down to the river bed. About a mile further, after crossing this spur by a low kotal about 100 feet nbove the river, is the village of Khair Khel, contnining nbout 300 houses, with some oultivation reaching down the banks of the river. From this point cultivation only exists in small, unimportant little patches on either side the river, and the villages are insignificant. The road from Klair Klel passes over a low, stony plateau, only a few feet nbove the rivor level, muoh of the same nature as that existing between Jagdalak and Knta Song, ouly without the deep, intersecting water-courses whioh render that rond so full of steep gradients. Nine miles from Salsh Khan is the village of Kuoh Mahomed Ali, the lust four miles of the road being fairly free from stones and easily
traversable. Two other villages are passed en route, viz. Kaghar Kuch and Urmur. The former possesses nbout 100 houses and a emall, square, mud fort, mensuring about 40 yards each way, the rond running through the middle of the village and under the fort wolls. There are a oouple of emall villnges on the left or opposite bank of the river, nbout opposite to Kaghar Kuch, inLabited by marauding bands of Utman Khels, one of the uumerous sections of the Ghilzni tribe. The villages of Sakh Khan and Khair Khel are peopled by Nasars, another seotion of Ghilznis, who are said to be occupied entirely in agricultural pursuits and not to share the marnuding proolivities of their neighbours. There are, however, several villages not far from the road, but quite out of sight, hidden among the low spurs at the foot of tho Seah Koh range, inhabited by Ahdamzies, who are well-kuown rolbers. These villages between them could probably muster 600 or 700 armed meu if neoessary. The left banls of the river at the eastern end of the valley, and the valleys of the Alingar and Aliehang contain many important villares, of which the prinoipal appear to be ocoupied by Tajiks; Charbagh and Mandrowar are T'hjik villages. Alishang itself, too, is Tajik. Mingled with the Tajiks are rarious sections of Ghilzais, Dehgans, and Safis, both of which latter people are ailied by language and race to the Kafirs of Kafiristan. The Safis oocupy a considerable estent of country fringing Kafristan. They spread from the north of the Lughman valley and the southern slopes of the Kafiristan hills across the Bad Pakht range over the Ushin and Tagao valleys, probably into the valley of the Panj Shir, north of that part of the Kabul river whioh flows through the Doaba.

The village of Kuoh Mahomed Ali may be said to terminate the Lughman valley. Opposite to it rise the rugged penls of the Bad Pakht, themselves an offshoot from the great Chardi mountains which are piled up between the Alingar and Alishang. The Bad Pakht form the western boundary of Lughman, and over them runs a well-known Kuchi route from Mandrowar to Nagulu opposite Surobi in the Doaba. About a mile west of Kuch Mahomed Ali the river emerges from the gorge known as the Dabeli, along which no track whatever exiets. At this point, where it is about 2,200 feet above sen level, it is necessary to leave the river and rise gradually over the Adrak Badrak (so named from two peaks overlooking it) to a height of about 4,000 feet over a rough, but very practicable, asoent to the villages of Chotn and Barra Durgai. Chota Durgai is about four miles from Kuch Mahomed Ali; Barra Durgai being about two miles further on at the foot of a descent of about 500 feet from the highest point of the pass. From Durgai the route runs nearly levol across the stony plateau whioh forms the north-western base of the Seah Koh and Karkacha, and which reaches down from the mountain masses northward in long slopes to the Kabul river, forming a ourious geographical feature, common both to Northern and Southern Afghanistan. This rougb, uneven, plateau, through which the Kabul river runs, after emerging from the Kabul plain through the extraordinary defilo known as the Tangi Garhu, gathering the waters of the Panj Shir, the Tagao and Usbin, and passirg in succession through the Gogomand and Doaba valleys to the Dabeli defile, extends westwards to the Deh-i- eabz rauge (overlooking the Kabul plain), and northwards to the base of the Nijrao and Kafiristan hills. The only oultivnted parts of it are those bordering the rivers mentioned, which here and there (as in Tagao and Sarobi) open out into valleys which, if they are narrow, yet show extraordinary richness and fertility, being filled with thriving villages surrounded by orchards, meadows, and corn-fields.

The Adrak Badrak route finally joins that of the Jagdalak pass at the northern ond of the Parri-darra, or Jagdalak defile, thus turning that defile completely. But before its junction with the main route, it rises over the Dabeli kotnl to a height of about 5,000 feet above sea level, falling again to 4,000 feet, which about represents the level of the Parridarra. This descent forms the stcepest incline in the whole ronte, and has required some special attention to make it thoroughly practicable. So that the whole difficulty of the Lughman valley route to Kabul from Jelalabad may be said to be distributed between its two endsthe Deronta defile aud the Dabeli pass. Between these two points the road, as it exists in its unmade condition, offers very uuusual facilities to a marching force from its contiguity to a largo river and its easy gradients. The tntal distance saved by the adoption of this route from Jelaabad to Kata Snug would be about 12 to 15 miles; but thero would be a anving in the gradient represented by the rise and fall over successive kotals and ridges, which would be much under-estimated by a mere comparisou of the highest point passed over on this route with the known height of the Jagdalak pass.

The Luglman valley offers many points of great interest to the historian or archæologist. It is on the summit of the great white peak of Kund, overlooking Lughmnn from the region of Kafristan, that Noah's Ârk is snid to hare rested after the floods, and the valley of Dara-i-Nur, whioh lies on the border land of Kafiristan territory, leading into that land of romance and conjecture, still bears his name.

The famous zearat of Mehtar Lam (Lamech) is in the Alishang valley, and nunually numbers of pilgrims repnir from Jelalabad on a pilgrimage to the shrine.

Withio the limits of Lughman no topos (or stupas) are observable, although they exist in numbers in the district of Jelalabad, and one of the best preserved of them is at Deronta, near the entrance to the valley; but there are other evidences of a former occupation by a Buddhist population in thie eaves bordering the river, both at Deronta and opposite Kuoh Mahomed Ali. The Lughmanis too have ever been the oonnecting link between Kafiristnn and the southern world in the matter of trade. Kafir slave girls brought down from the mountains to the Dara-i-Nur were introduced by Lughmanis through the markete at Jelalabad and Kabul to the harems of the wealthy clesses of thoso cities. Kafir beauty is
famous; but it ie probable that, as a matter for export, its value has been lately considerably depreciated. A list of marohes from Jelalabad to Kata Sang is appended :-

Jelalabad to Asmatuln's fort		miles.
Asmatulla's fort to Khair Khel		"
Khair Khel to Kuch Mabomed Ali	...	\ldots	...		"
Kuch Mahomed Ali to Parri Darra	\ldots	13	"
Parri Darra to Kata Sang		4	"
		Total			miles

Notes on the Logar Valley by Captain T. H. Holdich, r.b.

From the western extremity of the Safed \mathbb{K}_{0} h range, about the position of the Shutargardan pass, there reaches out in a south-westerly direction a long watershed oomposed prinoipally of bare, rocky hills, called the Michelga and the Shari Koh, till it reaches a point about fifty miles east of Glazai. From here it bends suddenly to the north-west, nlmost at right angles to ite original course, and undor a new name (the Uluk Koh) it passes a little to the north of Ghazni, and becomes finally merged into the rough and crumpled mountain masses which originate the four great rivers of Afghanistan-the Helmund, the Surkh Rud, the Panj Shir, and the Kabul-and bind together such mountain chains as the Koh-i-Baba, the Hindu Kush, and the Paghman. This is perlaps the centre of the great web of Afghanistan geography. Over this watershed lie the prinoipal passes from Northern into Southern Afghanistan, leading from Kohistan and the plains of Kabul, or yet more remotely from Afghan-Turkistan to the great Ghazni-Kandahar road, or to other routes less known to trade traficic or travel in the direction of the Waziri country and the valley of the Gomul. Northward from this watershed the drainage is all carried into the Kabul river by the Logar and its principal affuent-the Shiniz. Tho valley of Shiniz and of the Logar, starting from the Sher-i-Dana pass, over that same watershed, close to Ghazni, would give the natural and most level line of communication between Ghazni and Kabul, but for the fact that after its junction with the Shiniz, the Logar still continues its easterly course till it rounds the comer of what may be called an accidental range. This would lengthen the line of route considerably, so that the Ghazni-Kabul road, after following the Shiniz to its junction with the Logar river, rums straight away northwards by the most direct line, rising and falling over a series of low kotals formed by successive spurs from the mountains on its left to Maidan and to Argundeh, and so through tho historical Chardel valley into Kabul city. Meanwlile the Logar, after an eastward course for 20 miles or so, receives an ocoasional tribute from the water-courses and streamlets draining the northern slopes of the Michelga, and then turns sharply to the northward, winding through a series of open plains connected by narrow tangis or gorges, after the fashion of most Afghan rivers, till it fiually runs out in the Kabul plain, where it earries after all kut a very insignificant tribute of water to swell the volume of the Kabul river. The reason of its insignificaice will be presently explained.

The Logar valley throughout consists of a series of broad open plains bounded by rugged hills, from the foot of which long, low, sandstone spurs stretch down with gentle gradients towards the river, presenting generally an appearance of arid waste, whioh limits the cultivated strip along the river banks to a few miles of width; , that its general appearance from commanding hills and poaks is that of a broad, green ribbon of cultivation, lying extended along an open, sandy plain, with a ferw outlying patohes of green here and there. The exception to this genoral appearance is where the river makes ita way from one plain to another through a gorge or tangi dosed in by rooky hills on either side. There are three such tangis in the course of the Logar. The Tangi Wardak, shortly after its junction with the Shiniz, conducts it to the Hisarals plain. From the Hisarnk it passes by the Tangi Wngjan into the Charasia plain, and thence again by the Tangi Navishta into the plain of Kabul. It is difficult to estimate the volume of the Logar because of the drain on it for purposes of irrigation. Narrow as the cultivated strip may appear, it is sufficient to support a great number of very large villages, and its high state of cultivation is very remarkable. The river, in many places during the dry month of May, is run to a narrow thread by the amount of water carried from it to the surrounding orops. Large areas are flooded for rice, and the irrigation system is so oomplete as to appear even complex in some parts of the valley. The villnges are conuected by narrow watered roads, no more ground space being taken up by the roads than is absolutely neoessary for communications which are never subjeot to wheeled traffic of nay sort. In order to move troops with faoility about the valley, it is as woll to avoid the cultiration as much as possible, and to make use of the flat sandy waste that bordors it. And yet the plensure of the green shndy lanes, over-shadowed by the sweet-scented trees which bordor each canal or cutting, surrounded by a waving sea of luxuriant crops, is suol that a fer extra miles, and perchance many extra hours of such marohing, is barely inducemont enough towards forsaking these cool, sweet paths for the hot, fiere glare of the unsheltered hill sides. And without wheeled artillery, there is no real difficulty in moving by these village ronds. It is almost impossible to exaggerate the oocensional benuty of the Logar palloy, viewed from the river banks. The white-walled, squaretowered villages (ench with its bastioned fort) are literally buried in the groves of darkgreen mulberries and palm-1rees. Poplar avenues are by no menns an unusual fenture in the scene, while the wide fields of olover (in whioh one may wander knee-deep) and of wheat
are fenoed off either with low mud walls, or with hedges of the wild yellow rose carefully banked and tended. Ocoasionally brond stretches of soft smooth turf flauk the river; but there is not, ns a rulo, muoh grass in the country. There is alwnys the enchantment, too, whioh distance lends to the hot, rough-sided hills which are ever the back-ground of the pioture: but the final olnarm of the distant snows is wanting in the Logar valley, and, in this particular, Knshmir soenery surpasses that of the Logar. The river gorges or tangis are always beautiful, without the grandeur and impressivenoss of the Kabul tangis, but with a picturesqueness due to the wealth of vegetation which they enolose, which does not belong to the Kabul rifts. The Kabul gorges are so stupendous that it is impossible for the eye to measure them fairly, and some of them have never yot been explored by living soul; but the Logar passes, on the oontrary, all admit of the passage of troops after some attention has been bestowed on the roads, and usually enclose a good etrip of cultivation on either side the river.

It is curious that south of Charasia the Logar valley should apparently be destitute of objects of antiquarian interest. There was at any rate, with one exception, nothing that formed a prominent feature in the landsoape. At Hisarak there are ruins on a low hill overlooking the river, which were said to be Bhuddist. I eannot quite agree to this theory of their origin. They appeared to be far more like the remains of an old fort, of no great size, but in a fairly strong position, with a good command of the surrounding country ; and as they form the solitary point of interest that marks the esception to the general rule, I should be inclined to suggest (in the absence of any authoritative description of them) that this is the fort that gives its name (Hisarak—small fort) to the adjoining district. From Charasia the Logar flows through a "tangi," oalled "Sangnavishta" (" or written stone") into the Kabul plain. The name refers to a stone which once existed in the gorge on which was an inscription. This stone is at present in Sherpur, and plotographs have been taken of it, which will no doubt prove of great interest. Another stone with an inseription is said to be at Safed Sang, near Zahidabad, in the Logar country; but this I have never seen. I should think it possible that, wherever the word 'Sang' (or stone) is applied to denote a locality in North Afghnnistan, there may have existed originally similar inscriptions on rooks in the immediate neighbourhood of that place. Near Kabul, where the Logar and the Kabul rivers are near to their junction, there are evidences of the former existence of a great deal of Buddhist arohitecture. The Takht-i-Shah or the summit of these hills south-west of the city, which were held so resolutely by the enemy in December until the assault of the 92nd Higblanders and 5th Goorkhas placed them in our possession, to be agoin transferred to Mahammed Jan on our retirement into Sherpur, is nothing but the remains of a Buddhist tope, partially escavated (and therefore affording most excellent bomb-proof cover) with oaves below it on the western side of the hill. The Siah Sang hills are perforated with caves, some of which were unearthod by Lieutenant the Hon'ble Talbot, r.e., while construoting a road on the western face of the hill, but which he had not time to explore; while near the village of Chakri, about ten miles south of Kabul, are many specimens of Buddhist architecture in an unusually good state of preservation. A small map, on the soale of one inoh to the mile, will best show the position of the minars and tope that have ba observed there. No doubt there are many more evidences of Buddhist occupation, whioh have never yet come to light. The minar, which is perhaps in the best condition, and which has attracted most attention from its oonspicuous position, is on the ridge overlooking the Kabul and the Kurd Kabul plains, and marks about the most oonvenient pass from one district to the other. It is 95 feet high, and about 62 feet in girth at the base ; a picture of it appeared in the Illustrated News of January 24th, 1880, but its relative proportions bave not been very well preserved; another sketch will be appended to this report. The early centuries of the Christian era, after the disappearanoe of the Greek and Soythian invaders, must mark about the epoch in tho spread of Buddhism, when all these minars and topes were built. The masonry is peculiar (eimilar to that of tho topes of the Jelalabad district), the small flat bricks or tiles which form the mass of the building being interepersed with rough natural boulders, which give it a ourious spotted appearance.

The present inhabitants of the Logar valley are Ghilzais and Tajake, the latter predominating. Previous to our ocoupation of Kabul, I believe the Logaris did not bear the character of being a partioularly turbulent or troublesome people to deal with; but our experienoes during the winter of $1879-80$ prove that the Logari can equal the Kohistani in his fighting copacity, and fully justified Shere Ali's judgment in detecting the Logaris to form with the men of Wardak, the flower of his regular forcos. At the aame time the Logaris are most ndvanced cultivators. The Logar valley embraces quite as much oultivated soil as any district of similar physical and gengraphical oonditions that I am aoquainted with in India, and the cultivation is of a very much higher order. For the explanation of this apparently contradictory state of affairs, we must look to the division of races occupying the soil ; and we probably find that the Ghilzai is, as usual, the fighting man, and the Tajak the ryot of the land.

Additions to Notes on the Logar Valley by Captan T. H. Holdich, re.

Tus name of the small village near the tope, marked in the eketoh map which accompanied the notes on the Logar valley, is Kanzada Kila, not Chakri. Clinkri, which gives its name to the monuments genernlly, is in tho Kurd Kabul valley (oalled Chakari in Mr. Claudius' map) ; there is no other village of the same name. The larger village, about a mile north north-west of Kamjadn, is called Usman.

In the nocompanying sketches the upper plate represents what appears to be the base of an unfinished minar, elose to the minar which is marked on the map south-west of Usman (about a mile and a half). It is built of a mixture of brick masonry with stones interspersed exactly like the other minars, nor is there any appearance of the rounded top whioh is characterestio of topes. The ornament which runs round it is ehown in figures 1 and 2, and alightly differ from that on the tope near Kanzada in the construction of the arohes which are centered in the latter, but not in the former. All these ruins have been exoavated, and I was told by an old man who remembered the excavations being made, that a silver oasket, containing coins and relics, was taken out of the tope, but nothing out of the minar, except small earthenware saucers like those used for charaghs. The tope evidently is of a more recent construotion than the minars. The dome is entirely brick, and there was origiually a coating of plaster over it. It is about 40 feet in diameter.

Extract from a Report by Major R. G. Woodthorpe, r.e., Season 1879-80.

A few remarks on the triangulation may be of some value. It is founded on two Great Trigonometrical peaks known as Kadimakht Ghar, a point a few miles north of Thul, and No. 187, or "Dingsar" (its local name), the base being computed from the latitudes and longitudes given in the Synopsie of the Indus Valley Series. This base was chosen of neoessity instead of taking one nearer Kohat, and working down from two absolutely fixed stations (instoad of merely intersected peaks) as at first intended, as the state of the country between Kohat and Thul did not allow of the survey party leaviag the main rond very far on the south, and any attempt to visit the prominent peaks to the north was absolutely forbidden by the political officers at Kohat. A very good series of triangles was oarried up to the Shutargardan in season 1878-79. A base in the Kuram valley was measured to commence work from, and when the triangulation was afterwards brought up from that, it was found that the difference in the values obtained by measurement with a subtense theodolite and by triangulation was only three feet, the total length being 4.03 miles. Of course it was impossible, under the circumstances of hasty marches and hostile people, to carry on the triangulation as carefully as it ought to be done; in many cases time did not allow of any mark, such as a cairn of stones, fe., being erected over the stations; and in other instances, where marks had been put up, the inhabitants destroyed them, and it was often very diffcult, when the hills, as they so often are, are broad and flat-topped, to make out the exact spot over which the theodolite had been placed when observing back to these hills. The results are fairly satisfactory notwithstanding these drawbaoks. The triangles are a little attenuated at the Shutargardan, any ascent of the Machalgu bills and the Surkhas range being forbidden. However, points on both these ranges had been well fixed, and by making use of them with supplemental angles, the triangulation has tided over that part and opens out again in the Logar Valleg, and so on to Kabul. In November, having left all triangulation behind, a fresh base was measured in Sherpur cantonment, and from this base points on the Bemara ridge, Sher Darwaza, Klburd Kabul, and Karogh ranges were fixed, and as opportunity offered enoh of these points was vipited, and from them many peaks on the Pagman, Hiudu Kusb, and Deh-i-Sabz ranges were fixed, which formed the basis of all the topography obtained around Kabul. Later on, this tringgulation round Kabul was connected with that in the Kuram Valley, as I have explained, but the values thus obtained for intersected points do not differ materiinlly from those previously worked out. The results of the triangulation* have not been finally worked out yet, but at present the values of a point common to the Kuram and Khyber triangulatiou differ by about 3^{\prime} in latitude and 9^{\prime} or 10^{\prime} in longitude. This differenoe may become less when the final results are worked out \dagger

The height of Kabul will probably alter elightly with the final computations, as better vertical angles have been observed in the later Logar triangulation than was possible before, but there is до rensou to sulpose that the result will be very different. The heights are of the Kuram and Kabul trinugulation points, obtained from Mirkwaili Sir and Tog as the initial points, though unfortunately reciprocal angles have not been observed at Mirkwaili. The value as at present assigned by the Kuram triangulation to Sikaram is 40 feet greater than that assigned to it by the Indus Valley series. Thie may be due partly to the faot that n house hns been built on Mirkwaili Sir, immediately over the Great Trigonometrical station, the level of whioh it is now impossible to discover; and secondly, it is highly probable that the highest point of Sikaram was not observed to from the Indus Series, as a point a few feet lower looks the most prominent from all plaoes east or south-east of Sikaram. It is only from the south that the real shape of the hill-top is discernible. The supposition is strengthoned by the fart that the latitude and longitude of the Kuram Valley hill station of Sikaram differ from thone of the Gireat Trigouometrical peak by about the distance that this lower point is from the hill station.

[^37](Sd.) G. W. Martin, Chaptam.
 one old winne.

Report on the operations in Southern Afghanistan, by Lieutenant St. G. C. Gone, r.e., Assistant Superintendent, Survey of India, season 1879-80.

I have the honor to submit herewith my report on the work executed by me in Afghanistan during 1879-80 in continuation of last yenr's report.

On completion of my work in Pishin in Octoher 1879, I received orders from Lieute-nant-Generai Sir D. Stewart, k.c.u., to proceed to Kandabar to talse charge of the work there.

Having met Captain Rogers, r.e., at Quetta, I took over from him such computations, \& c., of the work about Kandahar as le had to give me,

I left Quetta on the 25 th October, taking with me sub-surveyor Saidulla Khan, and took advantage of my passage aoross Pishin to fill in a ferv additional details on my map.

On arrival at Chaman, I received instructions from Kandahar to take an esoort of men who were about to return and to proceed to Kandahar by the Barghana route, which lies north-east of the ordinary road. This I did, making a sketch of the route traversed and the surrounding country on the scale of 1 inole $=4$ miles, amalgamating my work with that previously done by Lieutenant Hobday on the Kandabar-Chaman road. This work is besed on points trigonometrically fixed by Captain Heaviside, Captain Rogers, and Lieutenant Hobday.

I reached Kandahar on the 13 th November. On arriving there I found that there was no immediate prospect of any field-work, and so devoted my time to putting my Pishin work in order. It was at last arranged that as some troops were going out of Kandahar. towards south-west I might take advantage of their presence to extend the survey of the country round Kandahar on the scale of 1 inch $=1$ mile down towards the south west, thus mapping the fertile country lying along the banks of the Argandáb and Dori rivers, down an lar as their junction, or further if possible. I started on the 12th December from Kandahar taking with me my two sub-surveyors, Atma Sing and Saidullah Khan, and an escort of 12 Goorkhas. My orders were to keep open communication with the troops who were to be despatohed to the neighbourhood and to stay as near them as possible. A native offioinl, the Sháhgassi, was also sent with me by the Wali to aid me as far as possible.

I extended the triangulation about Kandahar as far as I could towards Girishk, so as to give the sub-surveyors fixed points to work on, and then started the detail survey. We continued the plane-tabling thus till the end of December, when I started with the intention of pushing down the Argandáb as far as I could, to try and extend our knowledge of the country in that direction. Unfortunately when I had gone three marohes and renohed Kila Shah Mir, just beyond Atakarez, I was peremptorily recalled by orders from headquarters as rumours had got about that the oountry was in an uneasy state. The people however were very fairly civil to us, and my sub-surveyors had no difficulty in prosecuting their work, although their oampe were at some distance from mine and almost unproteoted. For this seourity I have to thank the Sartip (who has since deserted and joined Ayub Khan), who used all his influonce to further the work. I was fortunately enabled to oomplete the survey of the country whioh was most essential, i.e. all the fertile and wellcultivated parts from which supplies were to be drawn to Kandahar. The area completed was about 160 square miles.

After waiting at Kandahar for about a fortnight, it was arranged to send out a reconnaissance up the Arghastan Valley for the double purpose of collecting supplies of bhoosa and grain and of enabling me to sketch the country. We started on the 22 nd January 1880, Major Clifford, 2nd P. C., being in charge. We merohed by Mandi Missír, striking the Argbastan river during our third march. Our fourth march was to Amin Kiln, where we were detnined several days by rain and snow, the weather being bitterly cold. Hence wo marched on up the Arghastan, passing its junction with the Khushk-i-Rud and camping amongst the Sundarzai villeges.

Hearing that there was a good direot road from here to Kandahar, we rode out to explore it. The road led over a low watershed, the 'Tagak kotal, into the Tarnak volley, and was an excellent one though it had a bad reputation from being greatly infested by thieves. This road was afterwards used by the lat Brigade of the Ghazni column on their maroh towards Kabul.

We continued our maroh up the Arghnstan, passing the junotion of the Lora and Arghastan rivers until we reached the village of Badozai, about eight miles from where the Arghastan issues from the hills. We were unfortunately unable to approach nearer Mnruf than this point. Of the three rivers forming the Δ rghastan basin the Khusht-i-Rud is the smallest. Its total length is about fifty miles. A fair body of water, however, comes down it, but it is very brackish and nasty to drink. Of the remaining two the Arghastan has probably the larger basin, as a good deal of the drainage, whioh on old maps was shown as running into the Kadanai, is now known to flow into the Argbastan. The Lora river, we were told by several people, takes the overllow drainage of Lake Ab-i-Istadn, and they said that when the lake overfowed the river-water oame down very salt.

From this point on the Arghastan we turned southwards and marched down parallel to the main range of bills through the Kadanai plain, striking the Quetta-Kandnhar rond at Debrai, whence we proceeded to Knndabnr. The whole of the survey done during this trip has been based on trigonometrioally fixed points.

I remained at Kandahar during the remainder of February and Maroll preparing for the marclı to Ghazni．On the 27th March Major Leach，n．e．，v．c．，arrived at Kandahar from Indin．I at once made over to him all documents，\＆e．，whioh were to remain at Kandnlar．

Henring that the first brigade of General Stewart＇s force were to move towards Ghazni nid the Khushk－i－Rud，I decided to move with them as their march would take me over a large estent of unknown ground．Wc left Kandhhar on the 30th March，and marched for two days up the Tarnak Valley．Thence we struck aoross the watershed between the Tarnak and Arghastan rivers，crossing by the Tágak pass，which we had explored in our previous reconnaissance．We marched up the Khushk－i－lud for four days，the country consisting of a tolerably level valleg，much broken up in the neighbourhood of the river by hillocks and scarps of red earth and conglomerate．These attain a height of from 50 to 100 feet．

Thence we passed over an almost imperceptible waterahed into the valley of the Tarank，camping at Pamba，about 10 miles south－east of Kalat－i－Gilzni．We then marched along parallel to the Tarnak along the foot of the Surgarh hills，which form the watershed between the Tarnak and Lorn rivers．

As far as Shahjui my survey depended on points trigonometrically fixed，but from that point onward I had to fall back on plane table triangulation and traversing as a basis for the detail sketohing．

From the time we left Shahjui until we renched Ghazni the country was entirely deserted，and as the only guides who could be got did not belong to that part of the country， it was almost impossiblo to obtain any information whatever．In many places indeed I was quite unable to ascertain the village names．On the 19th April，the day of the battle of Ahmed Khel，I had with grent difficulty obtained a hazara guide．After the fight commenced he several times tried to make off so as to get his slare of the plunder， but was with difficulty restrained．At last a well caparisoned，riderless horse，passing near proved too much for him and he disappeared．I never heard any more of him．

After the battle was over we marched 7 miles in a thick dust－storm，when it was almost imposeible even to tell in what direction we were going．This is a type of the mauy difficulties which a survoyor accompanyiug troops through an enemy＇s country has to cope with．

On the 2 lst we reached Ghazni，and as we stayed there a ferw days，I was ennbled to make a sketch of the vicinity on a large seale，in whioh I was assisted by several Ufficers told off by the Assistant Quarter－Master－General．

On the 23th April we reached Saidabad and were in communication with General Rose＇s brigade from Kabul，and I was enabled to join on my work to that brought down from Kabul by Major Woodthorpe．

From here we turned into the Logar Valley，where we remained for about a fort－ night．

We made a reconanissance up the Altimor pass with the hope of getting a good view of the Zurmat Valley，but lefore I had been five minutes on the top of the pass the enemy appeared and I was recalled．A few shots were fired in among us as we retired，but no damnge was done．I remained in the Logar Valley until all work possible there was completed． I then proceeded to Kabul and thence to Mussoorie，which I reached on the 19th June．

List of Heights along the road from Randuhar to Rabul traversed by the 1st Brigude．

They are all determined by barometrical observations．						
Camp	Marsidzai		3，697	Camp Mukur，	Tareno	6，561
T＇agal	Pass		4，718	＂Karez－i．Oba，	\} Valley	6,986
Camp	Kínat－i－Mir Alom，		4.474	，．，Jomrad，		6，97t
	Sarioho，	豆感	4，457	＂Mnehaki，	Ghnzni	6，900
＂	Mir Afzal，	号号	4，666	＂Ispandi，	Valley	7，252
＂	Salam Kıla，		4，952	，Ghaza		7，279
＂	Sheru，	品	5，577	Sher－i－Daua Pass		8，373
＂	Near Kuram，		6，302	Camp Shashgao，		8，184
＂	Khaka，		6，176	，Haftasia，	$\mathrm{Lograr}_{\text {Lrainage }}$	7，896
＂	Opposito Shajui，	$\frac{1}{\text { a }}$	6，057	＂，Haidar khel，	Drainage	7,204
	Jafir， Martaza，		6,652 6,369	Zamburak Pass ．．．		7，872

Notes on the Valleys of Mastung，Munychar and Relat，by Mr．C．P．Tonmens，Assistant Surveyor，season 1879．80．

The Kelát erics emanates from the stations of Dhik and Landi，nenr Quetta，of the Beluchistan series，and is carried down south to tho oity and fort of Kelat．The stations of the series ere on the high hills east and west of the valleys of Mastung and Mungohar， through whioh the high road from（2uetta to Kelát passes．The nature of the hills is the samo as those of the Bolín and nbout Quetta，with this difference that iustead of a confused
mass, they run in parallel rangee from north to south nad have wide fertile valleys between. Some of the ranges rise up in small steppes, notably the Avagul hills, towards the southenst of the valley. These steppes are generally well supplied with water from wells and are cultivated by the inhnbitnnts. A remariably fine steppe or platenu exists below the survey station on the Avagul range, its height is 8,000 feet above see level, and the steppe would make a good sanitarium for the troops at Quetta; it has four or five welle and a number of fields. The heights of the hills used as stations on the serios, vary from 7,000 to 10,750 feet above sea level, the latter being the height of Koimaran (literally the mountain of serpents), a well known hill nud the favourite resort of the shepherds of the oountry during summer.

The valley of Mastung, 28 miles in length from north to south, and having a mean brendth of 8 miles, narrow and very stony at the south, and widening to 16 miles at the north, is one of the most importnut in the northern portion of Beluohistan. It is watered by numerous hill streams, of whioh the chief is the Durisuna, whioh takes its rise in the southern hills and flows north almost the entire length of the valley. The Pashakuran Nalla is the second in importance; it rises in the Zairigat hills north-east of the valleg, and flowing west, unites with the Durisuna, and then falls into the Sirinap river whioh flows north towards Shorawak. The valley is very fortile; cultivation commences along the banks of the Durisuna, where the river reaohes the low lands about the centre of its oourse. and fields oontinue increneing in number as the volume of the water is augmented by additional streams from the hills, till the northern portion of the valley is reaohed, where the country may be termed an immense garden; fielde abound and are thickly iaterapersed with orolunds of apricot, mulberry, and other trees. The chief passes leading into the valley are ns follows:-nt the north, the Nishpa, from the Shal or Quetta valley, pnssable for wheeled artillery; at the north-east, the Mastung-i-lak from Darwáza (the Bolañ), and the Dasht-i-be-daulat, passable for lnden camels; at the east, the Avagul or Rambak, from the Ghor road, oonnecting the Dasht-i-be-dnulat with the Robdar pase, pnssable for lightly laden camels and mules; at the south, the high road from Kelát, passeble for wheeled artillery ; at the west, the Chotak, from the Sirinap valley, passable for lightly laden oamels; and at the north-west, an easy pase from the Kanak valley. The chief town is Mastung, from which the valley takes its name. It contains about 3,000 inhabitants, chielly Brahuis, and boasts of a fort, admittance to which was refused, so I am not able to give a very minute description. The fort is square, and has mud walle about 25 feet high, loop-holed; at the corners are bastions, capable of mounting guns; it hns one gate facing the town towards the east and two or three sallyports, and is garrisoned by a few of the Khan of Kelat's regulars, armed with the old Brown Bess. 'Tiri, a grent mart for grain, is about sis miles north of Mastuvg, and is the second town of importance in the valley. Besides Mastung and 'Tiri, there nre many other villages and hamlets seattered about the northery portion of the valley.

South of the Mastung valley lies that of Mungehar; it is much maller than that of Mastung: but very fertile. Its length from eust to west is about 16 miles, and its breadth about 6 miles. It is watered by a branch of the Sirinap, which takes its rise in the Koimarán and Melabi hills to the east. Uesides this stream thern are a number of ourious, underground canals termed Karez, described in previous reports by survey officers in Afgbanistan. The valley is thickly inhabited and has a number of small hamlets, but no village of any magnitude, with the exception of perhaps the village called Hindu-ke-shahr, assigued to the Hindus, situated near the road to Kelát, whioh containg from 50 to 80 houses. From the valley there is a direct road to Darwizo (the Bolán) passiug by the hill of Koimarín; it is however, seldom used, as water is soarce and villages few en route. Another road through the Shekh Háji pass to the east lends to the Robdar pass, and is much used during the migration to aud from the Katchi plain. The road to Kelát by the Marján pass is very good and is passable for wheeled artillery.

The valley of Kelát is very small in comparison with Mastung and Mungchar, but is quite ne fertile; the town and citadel of Kelat are situated towards its southern portion. The town is enclosed by a high wall once capnble of having guns mounted, but now in a dilapidated condition; it has three gates. The streets are dark, narrow and orooked, and the town is kept in a filthy state; its reported number of inhnbitants are 4,000; besides these the environs contain a very large number. The citadel is towards the south-western portion of the town and contniue His IIighuess the Khán's residence. The approach to the palaoe is very strongly guarded ; four or five gates and seutry posts, besides a long darls tunuel have to be passed before it is gainel. The palace audiance hall or council chamber overlooks the town and surrounding oountry for some distance, and it is here that the Khán passes most of his time.

The country throngh which the series passes is inhabited by Brahuis. Two or more elaves are to be found in each family; they are generally brought from Sehistan and the western country, and are worth,--a worman Rs. 100, and a man nbout Re. 200; they are generaliy well treated by their masters. Slaves of the African type are preferred to any other, as they are cousidered more faithful. A Hindu village, ns nlready mentioned, was met in the Mungelar valley ; it is inhabited by Banias (Karads) originnlly from Shilkarpur in Sind. Some of them no doubt are well-to-do, but all openly profess to be poor; they dare nat wear jewels for fear of being robbed. Avariciousness being the ruling passion of the Braluis, they were rather glad than otherwise at a survey party being in their oountry, as they could make a littic monay. Their demeanour was that of indifference to what I did
so long as they got paid. No escort was thought necessary for me when working on this sories, and so I had none; happily no mishap oí any kind occurred during the work.

From a surveyor's point of view, the country triangulated is all that could bo wished for, but it must be done during the summer. Circumstances necessitated that the series should be done late in the seneon,-November and December,-and consequently the hardships and exposure endured by the party were very great. The minimum thermometor on ocoasions registered 5° below zero, i.e. 37° below freezing point, and when it is remembered that hills, in some instances, of over 11,000 feet had to be ascended, sometimes without guides and lived upon for two or three days with an insufficiency of clothing and food, and no tent, the hardshipe enn better be imagined than described. The native establishment underwent the exposure cheerfully, and gave up many onste prejudices.

Repoit by Major R. Beavan, d.s.c., Assistant Superintendent, Survey of Iudin, on Survey Operations in Southern Afyhanistan and Beluchistan, season 1879-80.

In September 1879 I received instruations from Kandahar, through Major Campbell, il.e., to investigate the geography of the oountry between Sibi and Quetta. I was then at the Khojak Pass, and, taking advantage of the first convoy, I marched to Quetta, arriving there on the 23 rid September.

I here found that a portion of the escort of the Governor-General's Agent, with Captain Showers, Political Offioer, and Lieutenant-Colonel Bergman, in command, was about to start to explore the route to Sibi, wid the Hanna or Hanma Pass. Making hasty arrangements, I left Quetta with them, early the following morning. Mr. Price of the Bombay party, who was at Quette at that time, furnished me with the approsimate positions of several prominent mountain peaks on which my subsequent work was hased. The values given me were not very acourate, but I had to moke the best of them, and succeeded eventually in getting a sketch of the whole country between Quetta, 'I'hul-Chotiali and Sibi, whioh I have been told has proved of great value to the Engineers employed in laying out the new line of railwayrough though it is.

We marched via Astangi through the Tiri defile to Saugan, whioh we reaohed on the 6th October 1879. From Quetta to Astangi the road is good and the country open, but below Astangi the only route is along the bed of the river, dowing between lofty hille, whioh olose in at several points, leaving only a narrow gorge for the passage of the water. In many places the troops had to work for hours before a practicable path could be made for the camels to pass, and at a short distance from the eud of the Pass many days were expended in clearing a road.

Altogether it was found that the idea of making a railway, or even a cart-road, along this route, would have to be given up.

At Saugan we remained a fortnight, pending the arrival of Sir R. Sandeman, and the setling for our further progress with the Marri chiefs, who came to Saugan to meet us.

On Ootober 19th, Captain Showers and Lieutenant Jennings, r.e., started from Saugan to explore a direot road to Sharigh and Dargi. I accompanied Sir R. Sandeman's party, and on the 21st we marched to Bahdra, on the 22nd to Mian Kach, and on the 23rd to Harnai, not without some threats of opposition, whioh however were not oarried out.

The road from Snugnn to Harnai is good throughout, but in one or two plaoes along the Gandakin river it passes through narow defiles, commanded on both sides by steep and rugged hills, where it would be exceedingly difficult to force a passage against a determinod enemy. Again, a couple of miles on this side of Harnai, the road passes over a low kotal, affording a very strong position for defence. This kotal, wo were told, was occupied by Pathans, but on appronching it we found this was not the case. The road ria Mian Kach can be avoided by trirning north at Spintangi through a rift in the limestone ridge, but at the time we went up, this was not practicable for camels. Captain Showers rejoined us at Harnai, having explored as far as the Chapa defile. From Harnai we marched to Sibi, arriving there on the 30th October, in order to meet His Excollency the Governor of Bombay, who proceeded thence with Sir R. Sanderaan up the route we had opened out rid Saugan to Quetta; meanwhile I remained at Sibi and Dadur, nad ou the 9 th November I was joined by Messrs. J. 'T. U. Coson and H. Corkery, Assistant Surveyors, who were placed under my orders.

Faving made arrangements for these two assistants to tako up the topography of the Inw country noar Sibi, I returned with Sir R. Sandeman's esoort to Harnai, and on to Khost, where we met the Governor of Bombay and the Agent to the Governor-General on the 23rd November 1879. During a day's halt at Harnai I visited Torgarh or 'Iongarh Hill, about six miles south, and erected a stntion on the summit, from whence n good view was obtained over the whole country towards Saugan and Nari. I observed some angles hurriedly, but had not much time to spare in order to renoh camp again by nightfall. Returning from Khost the whole camp marohed via Harnai to Thul-Chotiali; the rond between these places is now fairly good, but at that time there was nothing but a mere track: it has since heen much improved. The drawback is the scaroity of water, whioh at one Lalting place (Snmbar) is quite salt and unfit for use.

At the request of His Exoellenoy I prepared a sketoh map of the country to illustrate his report, which has since been published.

On the 6th December Sir R. Sandeman started for India vid Vitakri, leaving Lis escort to garrison Thul. I was therefore obliged to remain at Thul till an opportunity should ooour of returning to Sibi. I employed my time in prepariag a tracing of my survey for the Assistant Qunrter-Master-General at Kandahar, and on other office work. We also made expeditions with some of the troops towards Chotiali, and to Baghao and Smalen or Smaber, where we spent Christmas day.

On the 3rd January I finally left Thul with a detaohment of the 19th Bombay Native Infantry, who were sent to repair the road between Thul and Spiutangi. I arrived at Sibi on the 12th, in time to witness the arrival of the first railway train and the opening of this portion of the Keandahar railway. Duriug the remainder of the field season-i.e., till the end of Maroh-I was employed at Sibi and Dadur, laying out triangulation and observing, superintending the detail work which was being exeouted by Messrs Coxen and Corkery, and doing office work-computations, accounts, preparing annual report of previous year's work, \&o. By permission of the Surveyor-Gonernl, and with the ennction of Sir R. Sandeman, I left Sibi on the lat April in order to take the records whioh I had with me, of 18 monthe' work in Afghanistau, to the head office at Mussoorie, and complete them there. I wns also anxious to procure any data that might be available for my future work, the Beluohistan and Kelát series of triangulation not having been calculated out up to that time.

On my return to Sibi on July 27th, I was anxious to proceed at once to Quetta, and to push on with the detail survey that was being executed by Messrs. Coxen and Corkery. Ifound, however, that the resources of the Transport Department were being taxed to the utmost by the despatoh of troops to the front, and no carriage was procurable in the country on hire.

Shortly after this the news of the defeat at Maiwand arrived, and all survey parties were racalled from the field. I was thus detained at Sibi until the 4th September, when I sucoeeded in getting carriage and started for Quetto. I subsequently accompanied the force proceeding into the Marri Hills; this work, however, falls within the operations of the field season of 1880-81.

Mr. J. T. U. Coxen, Assistant Surveyor, joined this party on the 9th November 1879.

Mr. Coxen's worl.

He was employed triangulating and plane-tabling during the winter near sibi and Dadur and the
Bolan Pass. During the month of April he was on leave, nad in May he proceeded to Quetta with the office, and made arrangements for commencing plaue-tnbling work in the vicinity. Escorts and carriage had to be arranged for, and advantage taken of the movements of troops, as the temper of the Pathan tribes was very ohangeable and uncertain. During June and July Mr. Cozen was working in the hilly country enst of Quetta, until he was recalled into Quetta on the 29th July 1880, on account of the disturbed state of the country.

Mr. Corkery also joined me on the 9th November 1879. He was employed plane.
Mr. Corkerg's wriks.
tabling near Dadur during the winter monthe.
In April he left Sibi with General Burrows, and marched up the Harnai route to Quetta. He was not able to do much on the way, but succeeded in sletohing some bits of country that had not previously been explored. The tribes along this route were then in a very disturbed state. He was afterwards employed plane-tabling west of Quetta, until the survey worls was stopped at the end of July.

Both Messrs. Coxen and Corkery have undergone a great amount of very hard worls, and had diffioulties and privations to encountor.

The work they have turned out has been oarefully done, and they have succeeded in dealing with the Pathan and Beluchi inhabitants of the country without raising oppositiou or provoking complaints, which I consider highly oreditable to them. They have been disappointed at not having had opportunities of eharing in any of the greater military operations towards the front, or of exploring oountries hitherto unknown. Thoir labours, however, have dot been unprofitable, although they may not have had equal opportunities of earning distinotion as fell to the lot of surveyors employed in Northern Afghanistan.

> Outtura of work.

The amount of work done during the year may be summarised as follows :-
Tringulation.-Four new hill stations selected and cairas erected. Preliminary angles observed at five stations.

Square miles.
Topography.-Reoonnaisance more or less complete on the scale of 1 inch $=4$ miles \ldots...

2,500
Survey in detail on the soale of $1 \mathrm{inch}=2$ miles $\quad \cdots \quad \cdots \quad \cdots \quad 1, \ldots$
Total ... $\quad \underline{\text { 4,000 }}$
Difficultics enrountered.-The principal drawbeck to survey operations in this part of the Carriage. country is want of carriage. I lanve tried, uusuccessfully, to hire camels by the month from the Dera Ghazi Khan district. The owners, however, refuse to come here on any terms.

The local Brahin earringe is entirely monopolized for the service of the troope, and camel-owners realize such enormous profits by carrying Government stores up the Pass at so much a maund, that they refuse to take service by the month. Wo have thus been entirely dependent on the Transport Department, and generally find difficulty in getting eamels or carts at the times and places thant we require them. This of course created great delay.

The next difficulty arises from the uncertainty of the climnte, and especially from the

Atmosphere.

 dust and haze which loads the ntmosphere at certain seasons, and prevents survey work being oarried on at all. Last year thick haze filled the air in tho middle of November. In December it was clearer, and in January, February, and March 1880 there were a succession of furious dust-storms which for days together hid every hill from view.The scarcity of water is also a cause of delay. Many parts, both in the hill and plain
Water. country are quite destitute of water, and in other places where water exists it is salt and unfit for drinking purposes. Hence special arrangements have to be made for bringing water to the camp from a distance, and half the day is frequently lost in going to and returning from work when the camp cannot be pitohed near at hand.

A natural result of bad water, and an unequable clinate, presenting great extremes

Health.

 of heat and cold, and, of ooarse, food, is a considerable amount of siokness both among Europeans and Natives of India. The country is not adapted by nature for hard work, and it onnnot be oarried through without distress and much strnin on the constitution.In an unsettled and bostile country it is of course necessary to make due arrangements for the protection of the survey parties. Advan.

Guards.

tage has to be taken of the movements of troops, and the surveyor is constnntly kept idle on this account. He is moreover often unable to visit some prominent hill, or to explore a confined traot of ountry whioh is essential in order to fill up a gap in the map.

The Military authorities will usually render every assistance in their power, but are not always in a position to send guards where the survey requirements would demand.

For instance, on applying for a guard to nocompany Mr. Cosen into the hills between Sibi and Bahdra, I was told that the guard could be given, but that they oould not be provided with oarriage for themselves and the neoessary supplies. For these reasons it is advisable to trust as much as possible to proteotion from the inhabitants of the country, but great watohfulness is requisite against thieving. Several cases have ocourred of camels, ©cc., being stolen at night, and not muck redress is to be had from the Civil authorities on these oocasions.

It will be seen, therefore, that survey work in Beluchistan is liable to serious difficulties and hindrances, and it is not to be expeoted that the out-turn will bo equal to that whioh might be obtainable under nore favourable conditions.

By Topographical Branch order No. 48, dated 12th July 1880, the party under my orders was organised ns a regular party for the survey of Southern Afghanistan, Beluchiatan, and the adjacent country, under the designation of the "Beluohustan Topographical Party." During the present and following seasons I trust we shall be able to complete a considerable area of country in ${ }^{n}$ systematio manner, on the scale of 1 inch $=2$ miles. The existing maps of Boluohistan are very valuable, but not having been based on geographical data, the positions of the various towns, \&o., are naturally incorrect in latitude and longitude. There are also many blanks to be filled up between the various routes that have been laid down by travellers. These deficiencies I hope we shall be able to remedy in due course.

Extract from a Report by Captain J. E. Sandrman, Deputy Superintendent, Survey of India, on the In inawadoy River Exploration, season 1879-80.
Many conjectures have been formed from time to time as to the source of this great river, D'Anvilles' theory and that of others being that it is identical with the Tibetan river, the Sanpo. This theory has been recently warmly advocated by Mr. K. Gordon, c.e. On the other hand, Captain Harman of the Survey Department bas, by personal observation and by the aid of explorers, all but proved that the Sanpo falle into the Brahmaputra.

Former attempts to explore this river have been limited to the following:-
Wilcox in 1825 visited the souroe of the western branch. Mr. Strettell, of the Forest Department, in 1874 went a few hours' journey above Maing-na, although he believed humself to be in latitude 26°. How he saw the junction of the two branohes of the river is strange, for it does not take place for nearly 30 miles beyond Maing-na, the spot from whioh the people told the explorer he turned baok. At page 170 of his narrative he says:-" $4 t /$ February 1874.-At 8 a.m. we left Maing-na The river inoreases in impetuosity We found ourselves passing up a noble gorge The hills echood forth the wild ories of my bontmon, cheering one another on as they endenvoured to stem the ourrent.... Our progress was slow and tho pace oontinued to decrease, until the orow found it was hopeless dopending any longer on their poles.... They jumped overboard with their towing ropes and renewed the struggle, and straining every nerve, it was as muoh as they could do to creep elong;" and then he describes how in a oouple of hours
more their troubles wero at an end, for be says: ", Here the river divides into two grent arms, that to the east being considerably the larger." On the 5th Mr. Strettell desoribes his return in fifteen minutes! Mr. Strettell's desoription of the rivers does not agree with that of the explorer, and I can hardly believe he could have got from Maing-na to the confluence of the two streams against such a current as he describes, in one day, and return in fifteen minutes ! I think he must have taken a basty glanoe from some distance and come to the conolusion he did : or else more probably he was deeeived by the river being divided into tro by an island. This actually occurs at Shanta-yole-ywa above Maing-na, which I cannot but think is the spot reanhed by Mr. Strettell.

Dr. Anderson in his report on the expedition to Western Yunan, devotes a chapter to discussing the probable sources of the Irrawaddy. He is no advocate of the theory that the Sanpo is the Irrawadly. He himself visited the first defile above Bhamo, and he gives the opinions of Hannay, Bayfield, and Griffitl, who had been as far as latitude 25°.

Early in 1879 the Surveyor-General asked me if I would train a man to explure the Irrawaddy. I need hardly say I was only too glad to undertake the interesting task. Through the esertions of Mr. Burgess, the Seoretary to the looal Government, a man named A-a was obtained, who had volunteered, and with the sanction of the Chief Commissioner his training was proceeded with.

I soon saw that he was an intelligent man. He knew the use of the compass already. I trained him to pace and observe double altitudes of stars with the sextant. The latitude of Rangoon being too low, the sun could not be observed on the meridian, but he was taught to observe it off the meridian. I instructed him, as best I could, how in higher latitudes he would be able to get it at noon. On the 17th October 1879 he started with one A-e M-e, an elderly man, and M-o, a nephew of his own, as companions. The former had been trading in timber up and beyond Bhamo for years, and, although an elderly man, was in many ways fitted to make a good assistant to the explorer. The party took with them about Rs. 300 , in gold principally, and the following instrumental equipment,-a 6 .inch sextant and a supply of quioksilver, a small prismatic compass and pooket compass, two boiling point thermometers, a common thermometer, and a bull's-eyo lantern. As A-a speaks Hindustani imperfectly, Messrs. Burgess and Pilcher, the Chief Commissioner's Secretaries, very kindly, and with great patience, explained to him all my instructions. A. note was made of the index error of the sextant and variation of the needle, and of the reading of the thermometer when water boiled at Rangoon.

After an absence of less than six months, the explorers have returned, and although they have not been able to visit the esact source of the river, they have not been very far from it, and have done a vast deal to silence conjecture for the future.

The following is taken from A-a's journal:-
October 17th, 1879.-The party left Rangoon.
Norember 2nd.-The travellers reaohed Bhamo. There they remained till the 7 th November. During their stay they looked about for a way of getting up the river, and at last found some Shan Kadoos starting for Haw-ka with salt, who agreed to take them for Rs. 5 each.

Notember 7 /h.-A start was made, and Maing-Ka whs reached by the evening.
Norember 8 8 . -The boat reached Tha-pan-bin. From hereabouts the river begins to narrow, and the rocky gorge continues to below Myintha. The current is tremendous, and the water forms into whirlpools between the large rocks that staud up as islands in the narrow channel. The explorer heard that in the rains no boat can row up, but that they had to be towed up with strong ropes from the banks; that some are yearly lost and people drowned. He says that the gorge is 200 yards broad at its narrowest. The people speak of it as "Kyouk-twin" or rocky gorge.

The inlabitnats on both banke are chiefly Poons, living in about a dozen villages from Tha-pan-bin to Pagan.

November 11th.-On this date Pagan was reached, and on the 12th the island of Hnotecho, a large village on an island inhabited by Shan Kadoos. The country on the banks olong bere is described as being a fine plain, parts of which were onoo cultivated. At this village limes are very plentiful. The people carry on kiang cultivation on the banks of the river and have gardens. The average breadth of the river about hero is over a mile.

Norcmilur 13 th.- Pcot-tay stream, south of Shway In, was reached. Here was obtained the first opportunity the explorer had of taking observations for determining the latitude.

Norcmher 15 th -Ayeing-dama was reached. From Poot-tay stream bearings of every turn of the riser had been tnken. The distances wore also noted by time. The mouth of the Mo-goung river was passed. The explorer heard that up its courso it widens out, that at is a large river, and that it takes its rise in a lake. From Ayeing-dama upward on every sand bank that is formed, the people wash for gold with great success. The river here is described as 2,000 pnces wide : the castern bank na 18 feet above the water.

Ayeing-dama is an old and once populouscity, and is called nfter a King who lived hero. There are the remaine of a fort. The place was of importance till the reign of the Burmese King Alompra.

A large trade used to be carried on with China, ond large tracts of paddy-land lie fallow. At present thero are 20 houses of Shan-Kadoos and fivo of Kachins: the former pay revenue to Burma; the linter do not do so here or anywhere.

Norembrr: $16 / h$-- Haw-ka was reached. Here fresh arrangements had to be made for the party proceeding on. During their four dnys' stay they slept in tho boat they had como
iu. The travellers here remarls that the tenk forests ever since they left Tha-pan-bin have been very fine, and they sav other useful timber also. The inhabitants since leaving the island of Enote-cho have been ohiefly Kadoos.

November 20th.-The explorers were able to continue their journey through the good offices of their former boatman, who got a friend of his own to take them on in his bont to Ka-oho. They passed the Shan- Kadoo villages of Koung-boo and Ta-Iaw. They heard that lately some Kan loung Kachins had made a raid on this village, billed the sawbwa, and taken possessiou of the village.

The people of Ta -law and Koung-boo wash for gold. Above T_{n}-law were met two tributaries of the river, - Nam-malee nod Nam-tabet streams. Up these, Kadoos, and also Chinese-Shans, live. Thoy are subjects of the Kan-loung King. The former pay taxes also to Burma. They grow opium. The Kachins about here obtain load ore from the bills, and they were seen "to burn the rocks in a kiln" by the explorer. They take the lead to Bamo. There is a road to China from Num-tabet, by which merchants bring cloth and iron cooking-pots. Above Nan-tabet there is a plain occupied by Kantees (Shans). They are emigrants from near the western source of the river. Further on was passed the village of Maing-mant, a Kadoo village. It is said to have been an important city; old paddy clearings still remain; also the ruins of a fort. At the present time there are 20 houses of Kadoos and five of Kaohins. Pa-law on the right bank has 20 houses of Chinese-Shans. Pinpa and Sanka are Kachin villages.

Noermber 23 rd .-Ka-cho was at last reached. This is a large village of nbout 80 houses of Shan-Kadoos. It was built in olden days by a Shan governor called "Hawpyin." It was a very important city. It now pays tribute to Burma in the elape of a yearly present. It pays notling to the Kachins. From Ka-cho also there was formerly n good deal of trade with China, but the depredations of the Kachins have closed the rond.

There is a large village called "Zoe-gyoon" on an islaud in the river opposite to Kaclo. It bas about 50 houses. The travellers were destined to make a long stay at Ka-cho. In the boat they had last travelled by they had heard that a saya (doctor), was the head man and much respected, and they had made ap their minds to arrive as guests at his house. H_{e} received them hospitably, and as their stay continued the friendship warmed, and they reoeived a lot of information from him about the people and country further on.

He told them that when the Panthays were at war with the Chinese that the later came to Ka-cho and had there enlisted many men by offering Rs. 50 or Rs. 100 , and that he had gone with nbout 80 or 100 men and had fought on the side of the Chinese; that after the war was over he remained in that country many months nad bad been up to the Noungea lake, which was so wide that one could not see across it. He described that there were lots of people there, Shan-Chinose and Kachins too; that a river flowed out of the lake to the westwards, which oould be no other than the enatern branch of the Irrawaddy. He said he was sure of this on account of the direction the water took.

On account of all they heard about the Kachins, the travellers during their stay at Kacho became convinced that it was useless their trying to proceed without a guide and interpreter, who at lenst could tell the Kachins what their object was in coming amougst them.

One day the Kachin sawbwn of a neighbouring village (Paroo) came to the house. They made freinds with this man and accompnnied him to his village on the 18th December in the hope that he might consent to be their guide; but they had no success at Paroo, and returned on the 23rd to Ka-cho.

The explorers took observations for latitude at Ka-cho. Owing to the constant dread of the Kachins in which the villagers live, the houses nre all shut up at 8 o'clook, sentries being posted, every man taking his turn. Tigers also enter the village and carry off cattle and pigs. There was a little courtyard behind the house where the explorer slept. He was there able to take some very good observations. He also boiled the thermometer here on two days, and in the day-time he went to the jungle twice, as he says, "with a da and his sextent" to observe the sun at noon; but these observations were not successful owing to his want of practice with the sun. The explorers one day applied to the Saya if he would not go with them, and when a reward was offered, terms were come to. He would not go however without a Kaohin companion, and sent for one Makan-too, sambwa of Pinpa village bellow K_{n}-cho. This man agreed to g_{o} as far as Sinpoung-poon, where the sawbwa, Laboo-shoung, lives. From the map it will be seen that this hill is a little further than the point from which the travellers had to tum back.

January 15th.-A start onwards was made. Mee-thoo-ma-hee was leit behind with directions to return to Rangoon if the travellers did not come back in a month.

The party consisted of the explorer and his elderly companion, the sayn, the Shan, Nga Kan-too, the Kachin, and a little Kachin boy whom the latter took with him.

Jamurry 16th-Mning-na was reached. Waing-maw, Ywadaw, and other Shan villages were passed, ench containing from 20 to 40 houses. Maing-na has 30 houses. Paddy clearing of former days lie fallow. The land is very fertile.* Many of the people of these villages and of K n -cho live by acting as interpreters and brokers between the merohants from Burmanand the Kachius. Above Maing-na there is no tribute paid to llurma, that being the frontier town. Shans also censed, and hereafter our travellers found themselves entirely among Kachins, what are called the Kanen-Kachins.

[^38]January 17th.-On this date their oamp was in the jungle near Kway-too choung.
Junury'y 18th.-Yesterday the travellers noticed the river considerably swollen, and on enquiry were told that it was oaused by the first melting of the snows. They heard also that the western branch of the Irrawaddy was called Malee-ka and the eastera branch Meh-ka. In the evening they reached Youk-san-poon. They desoribe the hills as oovered with the Ficus elastica from Maing-na ns far ns they went. From Ka -cho the distance had been paced steadily and the bearings recorded. The stars oould not be observed; it was very oloudy and a good deal of rinin fell. From here they had a view of the junotion of the two branohes of the Irrawaddy nad saw some miles up the western branoh. They thought it about 500 paces wide. They lived in the sawbwa's house.

Janury 23rd -They went along mensuring as before and recording, and reaohed Moo. koung-poon, where they put up with the sawbwa.

January 24 th. -To-day they orossed the enstern branch of the river. They saw it was amaller than the western branoh, and that there was no flood whatever ns they had expected, for it will be remombered as they passed Maing-na they had noticed the river swollen. The river was some 300 or 350 paces wide, but at this season had in places a narrow channel of running water of 100 paces, and in other plaoes deep and stngnant pools; as they saw up the river reaoh it was ooming down in rapids over and round large rooks.

They had to cross in a ferry-boat, and they questioned the ferry-man why the river was not flooded. He said it was not so till April. In the evening they reached Pone-ka.

January 26 th.-Reached Mara-poon hill. Went to the sawbwa's house.
Jamury 27 th. - To day they crossed the boundary between the Kansa and the Kanloung Kachins: these latter seem to be under what the explorer calls a "Badshal" who lives at Nga-kone-lapoon. They reached Mo-goung-poon Maing-koung. It will be seen hereafter that this was destined to be the termination of the route, and unfortunately no opportunity occurred of observing the stars. However, twice the sun was observed on the meridian on 31st January and lst February, and although the difference is 6^{\prime} (instead of the mean), the last observation has been adopted, which the observer deolares to be the best, and which tallies with the position of the place as obtained by the route so nearly that I have left it as plotted.

Felrurry 2nd. -The party moved to Toue-poon-poon, Pouk-lee-shoung, Akyee-wa's house. They began to make friends and to ask the road. They slept there one night.

February 3rd.-Returned to Mo-goung-poon.
The explorers were told of the oustom of the Kan-loung Keohins, that if a Shan or Burman wanted to oome to their villages, he must make friends with the sawbwa and come as an invited guest, nad that no one was allowed to come and go as they were doing.

February 15th.-They were allowed to depart. I have asked the explorers why they did not try the 'Cazoopoon route by whioh the saya had once gone eastward. Their reply is that the whole country had heard of the black men, who were popularly supposed to be Nats, being in the country, and that they could not have gone a mile without being seized. As it was, on their return journey they avoided the villages as muoh as possible, and when they saw one, turned off into the jungle and tooks a roundabout road.

February 17/h.-They put up at Pone-ka.
Fehruary 18th.—Crossed the river once more and saw that it had reoeded about three feet from a stone on which they sat on their former visit. 'They arrived at Pouk-san.

February 20th.-As they onme in sight of the main stream they notioed that it was more flooded than ever; it had risen considerably since they had last seen it. This is a strange ooincidence, that one branol should be falling when the main stream was rising, and points I think olearly to the nature of the two sources.

This observation of the explorer is quite an independent one, and was mentioned casually by him. He had no hint that he should watoh the rise or fall of the river.

Frbruary 21 st- -Ka -cho was renched.
ilarch 6th.-They reached Bamo.
Afurch 7h.-They found a Poongyee's bont proceeding down, by which they were ellowed to travel.

Dfarch 24th.-The party arrived at Mandalay, and went straight on board the steamer, reaching Rangoon on the 2nd April.

Tho following are the explorer's notes on the people among whom he travelled :-
After leaving Bamo, the people first met with are Poons, whose dwellings are on the banks of the river. These people cultivate very little rice, and live ohiefly on the produce of hill cultivation or toungya. They grow yams, potatoes, oil-seeds and cotton. Fish forms their principal food. They talk a dialect of their own. The women are dressed like Shans, the men like Burmans.

The Burmese extort from them as muoh as they can, there being no fixed rate of revenue.

The Kachins who inhabit the hills overlooking them also extort pigs, onttle, fowle, \&o., from them, especially when there is a funeral or marriage and sacrifices have to be made. One Kachin sawbwa rules two or three villages; that is, he considers these as his legitimate prey, and no one but himself is allowed to estort from them. Whenever a Kachin dies, the Prey, na have to nttend the funeral, each taking with him a spade, a da, a basket of rice and four annas in pioe. The Poons are Buddhists. They build pagodas and reverence puougyees.

Above Pagan, the Shan-Kadoos inhabit the river banks. They dress like Shans or Burmans. They wear silver ornamente. Their houses are like those of Shans, and thay speak both langunges. They are Buddhists. They plant gardens; also toungya or hill cultivation and kaing cultivation on the river banks, the latter consisting of tobacco, brinjals, cucumbers and pumpkins. On an island above is the Kadoo village of Enote-cho-kyosu. The Burmans appointed a thoogyee there, who lovies as much revenue as be can.

This village and another on the island refuse to acknowledge the authority of the Kaohins, whioh they can do with impunity, being on an ieland.

The Shan-Kadoos also cultivate rice. They trade with the Kachins and with Bamo. They import salt, clothes, betel boxes, \&c. Some live by washing for gold.

The villages along the river bank pay revenue to Burmn, a thoogyee being stationed in each village; they also pay to the Kachins, who indeut on them whenever sacrifices have to be mado.

Below Ka-cho there is a plain inhabited by Kantees, -emigrants from the country at the western source of the river. On their first arrival they asked permission from the King of Burma to settle. Their dialect is different from Shane. Their houses are like those of Shans. The women dress in black and blue. They have a short jacket and a petticont with a high waist. They tie their hair in a knot on their heads a little to one side. They are Buddhists.

The reason of the emigration was that there were two powerful anwbwas, Lone-kyeing and Loke-koon, who had a dispute. The former being defeated came down bere and is now a subjeot of Burma.

The Loke-kyeing sawbwa sends a yearly present to the King of Burma of an elephant or something else to show his respect, but pays no revenue.

Above Ta-lnw, up the Nam-malee and Nam-tabet streams, some Shan-Tarokes (Chinese-Shans) live. They are also senttered about along the river bank. They grow opium and cultivate the low lands. Men and women wear black clothes and pig tails. They speak Shan and Chinese, and, although Buddhists, men, women and children drink spirits. They have two kinds of priests, one like a poongyee, and the other eats at any time and driuks spirits and smokes opium, and, except for the priestly garment, is undistinguiehable from the people. These Shans build their houses on the ground like Kalas (Natives of India). The Kachins not only inhabit all the high lands, but they have homesteads also on the river bank.

In Tasaing are ten Kachin houses. They only go in for bill cultivation. They manufacture opium. Men and women wear very little elothing. The women's jaokets have no sleeves. They wear oowries ns ornaments round their waists and beads round their necks, and bangles, made of oane dyed black, round their ankles. They use leaves for plates. They are not oleanly, but eat and live like pigs. They have no oups or plates or knives or spoons. They have nothing in their houses. Their cooking-pot is either a large iron vessel brought from China or else of stone. Sometimes they boil their food in bamboos, and they use these solely for water.

Their marriage customs are peculiar. A rioh man has four or five wives. When a man's father dies, the son has to take all his wives, except his own mother. When a son dies the father has to give a substitute, his second son or some relative, or else has to take his daughter-in law to wife. The custom is that a woman once in a family must not quit it.

Every family has slaves, between whom and their mnsters and mistresses there is no difference made; they do the same work, and all eat together the same food.

They smoke opium every day. Men, women, and children drink fermented spirits every dny, made from rice in their own houses, just ns Chinamen drink ten. The spirit is called Koung and Chet.

If any one gets ill they say that the Nats have cansed it, and they sacifice extensively on these occasions. They wear very dirty clotlees. Piupa and Sanka and other villages along the river bank are occupied by Kachius, who know a litte Burmese und Shan. About 20 or 25 people live in a long house, whioh has a number of rooms in a line. There is a fireplace in each room at which they cook, and in the common passage outside the room, there are some freplaces round which they sit and emoke opium.

When Maing-na is passed, the oountry is peopled entirely by Kaohins. First oome the Kansa Kachins, and nfter them the Kan-loung Kachins. The latter have very little communication with strangers, and their custom appareatly is for no oue to visit the hill who is not a friend of the sambwa, or whom the sawbwa does not meet and lead in himself; hence their suspicion of the travellers. To the enst are the Maroos, a tribe of Kachins. These extend northwards to the water-shed of the Irrawaddy. To the east of thom again are more Kaclins. A village is nlways called by the name of the hill (poon) on which it is situnted. Evey hill has its own sawbwa. To him presents are given whenever the people sacrifice, which they do on every ocension. Any relation of a sawbiwa can order the people about. They are obedient. Whenerer there is a dispute with a ueighbouring bill, the sawbwa gives the order before fighting takee place.

A oustom is that overy boy after renching ten years of age carries with him a bag and a da. People carrying more than one bag are thought to have something secret with them, or money, and aro apt to be robbed.

Thasir pa-soes (kilts) are five hands in lengtl and very narrow. The turban is red or white ; the jacket black or white ; these they procure from tho Shans in exolange for rubber, oil-seed and cottou. They can't wonve jnckets.

Some hare a hnir-knot. Some cut the hair short like Rulus. The women dress in the same short petticoat as the males, dyed black, and tied tightly with a string round the waist. Their jacket is ornamented with shells; nlso strings of cowries are tied round the waist. Some rich men's wives are tattooed in bands from the ancle to the knee. They wear red and white beads round the neok. They never trade. If they are in want of salt or ngapee or anything, they ge to a Shan villige and exolange oil-sood, or rubber, or yams, or cotton for whatever they want.

In the hot senson sometimes 30 or 40 men will make an excursion to a distanoe of nine or ten days' journey to some village, from whence, having killed or driven off the men, they carry off all the children aud sell them as slaves, exchanging them for opium or cattle. They have no compassion and act as brutes, and when they have a dispute the stronger kills the woaker, seizes the wife and ohildren, and sells them. A rich man, a eambwa, has 40 or 50 elaves ; a poor man, four or ive only. 'The Burmese style this Kan-loung race "robbers." When a big man goes to make a raid, he does not require money to onlist his soldiers, but they get as pay four or five ticals (weight of over five rupees) of opium eaoh. If they take captives they never torture them or ill-treat them, but feed them well until the time comes for killing them, when they cut off their hends with a div. Among the Kausas the sawbwas receive presents or bribes. Among the Kan-loungs there is no such custom as for the subject to give anything to the governor or sawbwa. The King of the Kan-loungs lives in Nga-kone-lapoon. He is young, and is apparently acknowledged us supreme, and without consulting him nothing of importance is undertaken.

The hills are described as devoid of large trees, and the population is so dense that the same fields have to be cultivated three or four years in succession. They cannot grow enough riee for themselves, and have to eat Indian-corn and yams and arums in the rains. They grow a little tea too. The hills are covered with cultivation and Ficus elastica.

The explorer speaks with admiration of their roads, which they malse in zigzags up steep hills. The land is very moist and fertile, and they evidently have a perfect system of terracing. for ke says they grow rice all up an almost perpendioular cliff. Snow falls, the climate is cold, and water is found on all the hills at the top. I am telling the story just as the explorer relates it.

When a marriage takes place, the bride has to give prosents to the parents of the bridegroom. The esplorer says that in the morning all the food for the bousehold was oooked in a large vessel, and then each man's slare wrapped up in leaves and made over to him. The explorers got their shares with the rest.

Whenever they sacrifice animals, they always hang up the horns on the steps or at the door. When a Kachin dies, four or five days' revelling takes place and cattle are sacrificed. Ho is buried under a mound. A ditch seven or eight feet deep is dug round, a tree planted on his grave, and a pole stuck into the ground with the horus of the beasts sacrificed, hung up on it. Their musio cousists of a very loug drum beaten elowly, to the sound of which the young men and women dance.

Ono sawbwa was met with long hair (four feet long) tied in two plaits and wound round his head like a turban, in the middle being a hair-knot formed with some more of his hair.

One Sa-goo-noung, a leader of soldiers, elowed them a suake's head, with two horns, one inch long, pointing backwards.

The sawbwa who governs the Mo-goung-maing-koung-poon, by name Sanouglee, hne a black stone of a flat shape, something like a hand. It is always moist, and whenever put on one side turns on the other of itself. It is said thet when lee first got this stone it was nbout 40 tolahs in weight. Now it has increased to 80 tolahs; it has also got bigger. If it is kept in a cloth, the latter in time becomes full of holes, and it is supposed it eats it ! The explorer was taken into a room and shown this wonderful stone, whioh is supposed to have life.

The Kansa and Kan-loung tribes of Kachins are divided into the following sub-classes: Lapake, Lasee, Lakoon, Lathoung, Sadan, Karn, Kakoo and Yoyin. The above all speak the same language.

The Maroo tribe are divided into the following:-Lamna, Malan, Lawin, Lapouk and Kalan. These speak a different dialect from the Kansa aud Kan-loung sections, and ar. said to be a simpler, quieter, race, and do not commit the aamo barbarities as the latter.

The following materials were nvnilable for the compilation of the map:-
The river has been actually reconnoitred to about 60 miles up its eastern branch when it was last seen. The latitude of Mo-goung-poon, the termiantion of the explorer's route, is $26^{\circ} 08^{\prime}$ ns obtained by n double nltitude of the sum when on the meridian.

The latitude and longitude of Bamo have been taken as $24^{\circ} 16^{\prime} \mathrm{N}$., and $96^{\circ} 53^{\prime} 47^{\prime \prime} \mathrm{E}$. The latitudes of Poot-tay stream, Haw-ka village, and village Ka-cho have been deternined ly observations to four or more stars.

On a graticule on the beale of eight miles to one inch, Bamo was projected; also the other three points, whose latitudes are determined in longitudes adopted from the published maps of the river in the given latitudes.

From Bamo to Poot-tay stream the map has beeu compiled simply from notes made by the explorer.

From Poot-tny strenm to Hav-ka and from Haw-kn to Ka-cho hearings and distances by time were recorded, and the plots of the route agree wonderfully betweon fixed points, and with the aid of the explorer are fitted in with considerablo accuracy.

From Ka-cho the route has been plotted by bearings and paoed distances. $3^{3} 30^{\prime}$ has been deducted from every observation for the rariation of the explorer's needle; the latitude of the termination of the route is cheoked by the observed latitude of Mo -goung-poon, and it agrees so nearly (within a mile) that the plot is left unaltered.

The height of K_{a}-oho above sea-level has been obtainod by two boilings of the thermometer ou the 2nd and 9th Deoember. The final height is 1,020 feet, the temperature of the air on the two occasions being 65° at 9 A.M., and 71° at noon.

No opportunity occurrod for ascortaining the temperature of tho boiling point agaio.
At Mo-goung-poon et the end of January, at 9 A.M., the temperature of the air in the shade was 66°.

The following is an abstraot of latitudes:-

In the Kaohin country, in addition to the names of the villages or hills, I have given the governors' or sawbwas' names, as they appoar to be as much known by the one as the other. It will be seen that the enstern branch of the river splita up again into two branches. The sources of these have been plaoed on the maps as they are for the following reasons:-

At Mo-goung-poon Maing-koung, the sawbwa said that six days' journey from that place the river oeased. A 'Kachin' day's journey is taken at eight or ten miles, as according to the explorer that is what theso people travel. The sawbwa pointed in the direotion the river flowed. Ho said he had been there. When the eagra, who was present, meationed the lale, ho said he had not been in that direotion.

He said the Maroos extended as far ns the river. After them and beyond the river oame a people wearing white olothes and apenking an unknown language.

At Main-goung-poon the sawbwa, of the same name, said he formerly lived at Sakeepoon, and had been to where the river ended at five or six days' journey from his former house.

The snya of Ka -olo village, who accompanied the explorer onwards from there, atated that when the Panthays and Chiuese ('China-gyee' ns he called them) were at war, he went with a hundred mon to take part with the latter.

When tho war was over he remained several months among the Chinese, and had been up to the lake oalled "Noungsa," which he said was so large he oould not see aoross it. He stated that a river flowed out of it to the west; that ho was sure it was the Irrawaddy n ancount of the direction of the flow of the water." The explorer first heard the Sayn tolk of the eastern branoh of the Itrawaddy as the In-myit, meaning ' Lakse river, whioh made him enquire why he called it so. He said there were no hills near the lake, so it would arpenr to be on an elerated plain. Ho desoribed the country about there to be well pooplod with Shaus and Kachins. The longitude of the lake is approximately obtained by the distance to the Chinese territory being invariably given as about six marches fron the Irrawaddy. I may have put it too olose. There is a snowy peak on the map, but this has snow on it only in the coldest weather I oonolude. The eastera branch of the Irrawaddy is styled by the Shans 'Myit-ngeh' or ' Little river,' the western brauch ' Nyit-gjee 'or 'Big river.' The Kachins call tho two branoles Moh-ka and Malee-ka.

[^39]At Ka-oho the explorer heard that it was from 22 to 24 days' journey to Kantee, near the sources of the western branch. At Mo-goung-poon he heard that it was from eight to ten days' journey to the same place. At Mo-goung-poon Maing-koung he heard from the sawbwa that northwards from where they were the distanoe aoross from one branch of the Irrawaddy to the other was only one day's journey.

An important fact was observed by the explorer, from whioh some conolusions onn be arrived at. One perhaps is that the eastern branch has not its souroe in the snows, or if so only a small branch of it. One thing is ovident, that the first melting of the snows flooded the river from its western source, whereas the other smaller branch was not affected but was daily drying up.

On the 16th January near Maing-na the explorers noticed the river unusually flooded, and heard their companions say this was owing to the melting of the snows.

They then gradually struok off from the river, as will be seen from their route on the map. On reaching the eastern branch, where they had to oross it, there was no sign of a flood. They re-crossed at the same place on their return journey on the 18th February, and they noticed that the water had receded about a yard from the stone on which they had rested at its edge on their former visit. On the 2lst February, when they come in sight of the main stream again, they were surprised to see that the river was not only in flood but double the height that it was the first time.

These observations show the intelligence of the explorer, and I think if all he heard and saw is put together, it may be concluded that the main bravoh of the Irrawaddy is the western, and that Wilcos's proud boast that he had discovered its source in 1825 has after all turned out to be true, and that all theories about the Sanpo being the Irrawaddy may be for ever abandoned. It is possible the Noungsa lake, said to be of great size, may account for the enormous rise of the Irrawaddy in the rains. Also it is possible that Wiloox though he thought himself near the source was not so in reality, and that the river takes its rise higher up in Thibet, but that it is the Sanpo is more than improbable.

Note.-Since writing this report I bave received from Mr. Burgess a oopy of the gauge registnr of the Irrawaddy river kept at Myanoung main gauge during January, February and March 1880.

I see by it that the river was falling steadily till the 20th February, on which date it began to rise, the readings being on 19th February I 08 feet, 20 th February $2 \cdot 17$ feet; it fell again from the 3rd March to the 22nd, when it began to rise and continued to do so till the end of the month.

The gauge reads 40 feet at the high flood mark of 1875. I asked for this information out of curiosity, to see if the flood noticed by the explorer in latitude $25^{\circ} 30^{\prime}$ was nppreciable down here. I hardly expeoted it would be, but it is satisfactory to find that the river did begin to rise on the 20th February aud on 22nd March, and continued to do so.

Translation of the Explorer's notes, appendix to Caplain J. E. Sandemas's report on the Irramaddy River eiploralion.

About eight miles above Bamo there is a place called Kyouk-twin beoause of the high floods there during the rains. There are great mountains on either side, and in the middle of the river there are many large rooks which bar the passage. Between these rocks there are most violent whirlpools. During the rains boats going up and down cannot use their oars. They must go by means of tow-ropes. Many people perish here every year through the destruction of their boats.

The people who live on the right and left banks along the whole course of this Kyoukmyoung are called Poons. From Tha-pau-bin to the village of Pagan there are nine villages, containing altogether some 150 houses. The inhabitants live by cultivating toungy/as and cutting bamboos. There are no tillers of rice-fields. Theso people have a tongue unlike the Bhan, Kachin, or Chinese language. The men dress as Burmane and the women as Shans. Their houses are like cow-sheds; and they are in the habit of wearing very filthy garments. The Burmese authorities take from them what revenue they think proper. Various Knohin sawbwas rule over them. When a Kachin sawbwa wants to make offeringe of cattle, pigs, or poultry to Nats, he makee demands on these people, who have to furuish what he requires. When a Kachin under the ruling sawbwa dies, ench house must assist by furnishing a man with a pyee of rice, a quarter rupee, a spade, and a da. These Poons are Buddhists. They study Burmese and Shan literature. After the manner of the Burmese, they build monasteries and worship the sacred clergy and images.

Above the vi llage of Pagan Kyouk-twin there is an island called Hnote-cho-kyoon. ShanKadoos live on this island. The men dress as Burmans and the women as Shians. The women wear silver bracelets and gold earrings. These people build houses like the Shans and Burmans. They spenk Shan and Burmese, and are Buddhists. They cultivate orchards, laings, and corngyas, and live by trade. There is an upper and a lower village. The Burmese have appointed a Thoogyee, and levy what taxee they think proper, The islands do not submit to the authority of the Kachine, for the Kachins oaunot attack them, since they aro surrouuded by water.

Above the island of Hnote-cho, Shan-Kadoos live in Shway-in, Tahaw-na, Kone-tha, and Hantha villages up to the city of Ayeing-dama. They cultivate rice-fields, kinings and toungyts and trado. The men drees as Burmese and the women as Shans. They speak Shan and Burmese. The Burmese hare placed a Thoogyes in each village, and they levy what they think proper in the way of revenue. They nre ruled by various Kachin sawbwas, to whom, when asked for onttle, pigs, poultry, or rice for offerings to the Nats, they must furnisli what is required. When a Kachin dies, each louselold must send a man to assist with a pyee of rioe, a spade, nad a da. These Shan-Kadoos are BuddLists, and like the Burmese they build monasteries and worship the sacred clergy and imnges.

Ayeing-dama is an ancient carpital city, nud there is something still left of the walls and diteh. Up to the reign of King Bodaw laya, a road between it and China was open and traders dwelt there, carrying on coustant tratfio and trade by mouns of paok bullocke and mules.

There is nn exteusive plain here where existed rice-fields formerly. Timber does not grow here eveu now. The plain is in its former state. Were industry estnblished here afresh, a great aud most flourisling eity would spring up. There are now some 20 Shan-Kadoo and some five Kachin households, governed by one Done-ngoo, a Kachin enwbwa. The Shan-Kndoos pay revenue to the Burmese Government; but the Kachine dn not. Kaclins do not pay revenue to the Burmese on whatever part of the river they may dwell; they are called savages and are let alone.

Above Ayeing-dnma are the villages of Ka-yone, Haw-kn, Koung-hon, and Ta-law, inhabited by Slan-Kadoos, who live by tilling the soil. There are extensive rice-fields. The men dross as Burmans, the women as Shans. The women wear silver bracelets and earrings. Like the Burmese, they build monasteries and worship the olergy and sacere images. These villages are goverued by various Kachin sawbwas. The Burmese Government also have appointed a Thoogyee to ench village. The Burmess levy such imposts as they think proper. When we arrived at Ta-law, the sawbwa of that village had been seized and killed by a Kan-loung sambwa. The village is governed by Kan-loungs. Some of the inhabitants of Tan-law and Koung-boo live by washing for gold.

Above these villages there are two strenms, named the Nam-malee and Nam-tabet etreams. Shnn-Tarokes and Shan-Kadoos live there. The villages are governed by Kan. loung Kachin sawbwas. The Burmese Government take revenue from the Shan Kidoos. The Shan-Tnrokes and Kachine grow poppies and mnke opium. They cultivate rice-fields and tonngyas. The Kachius smeit lead. Lead comes abundantly from the strenns. There is a rond open to China, and Clinese merehants constactly traffic and trade in this metal. The lead is exported to Burma also.

A Kantee chief left his country, with the intention of not returing, to become the vassal of the King of Burma. He said that he was n hereditary sawbwa; and asking permission of the Bumese King to establish towns and villages, obtained a Royal Order 'Ihis olief has now established himself above the Nam-tabet stream in a large plain. The Kantoes epenk a language of their owi. Their honses are like those of the Sluans. The dress of the men is like the Burmans. The women wear garments dyed blue and black, sewn up in front like lonegyees, and silver bracelets and earrings; and their hair-knots are worn over the middle of their crowns, flattened out and twisted round. These people are Buddhists, and like the Burmese worship the clergy nad images. In the native country of these Kantees the sawliwas of the Lone-kyeing and Lobe-kcon tribes being nt enmity with ench other went to war, and the Lone-kyeing sawbwa fleeing on defeat, the Lolse-koou sawbwa at present governs in the Kantee country; while the Lone-kyeing sawbwa, becoming a vassal of the Burmese King, has now established villages and towns. The Like-Loon enwbwa must present yearly gold and silver flowers to the Burmese King. He does not pay revenue, and he levies what dues he chooses from his people.

Above this Kantee village is the village of Ta-saing, consisting of about 10 Kachin households. The inhabitnnts cultivate toun!y/ns. They grow poppies and make opium. The men wenr waist-cloths (nan-ngeh). The women also wear waist-cloths, whioh they tie around them with waist-bands. Above they wenr loose jackets with short sleeves. At the waist they wear girdles made of cowries threaded with rattan. On the neck they wear white and red like-tme beads. Above the calf up to the kuee they wear hoops of rattan dyed black. On the hend they wear coarse cotton oloth. some four oubits long, as a turban. They wrap up their rice in green leaves, and eat it on leaves. Their ourry is also eaten on leaves. They are dirty in their eating and drinking. They bare no suol things in their houses as bowls, plates, spoone, cups, okes, nad dominglans. They drink water out of hamboo tubes, With regard to their oustoms: if a father dies the son takes poseession of his father's wives, except his own mother, and makes them his wives. If the son dies, a sulbstitute must be given to the son's wife. Should there be no relation to give as a substilute, the father takee possession of the danghter-in-lnw and makes her his wife. If the elder brother dies, the younger brother takes possession of his wives and makes them his own ; and if the younger brotior dies, the elder brother does likewise. The unmaried young men and women, ao long ns they are uot brothers aud sisters, act like the brutes. The people amoke opiun daily. Kuzmo and kiming liquors are preparea at home by the women, and druak by old and young, men and women. If any siokness befals them, they say they are Nat-seized; nnd laving killed onttle, or pigs, or poultry, nud saying that they are offering to the Nats, old and young, men and women, assemble and eat and drink. They aro very filthy in their dross.

Above this place is the old town of Maing-maw, whioh contains some 20 or more Shan-Kadoo houses and five Kachin houses. The Shan-Kadoos oultivate rice; and the Knchins cut toungyas. The Shan-Kadoo men dress as Burmans ond the women as Shnng. Like the Burmese they are Buddhists, building monasteries and worshipping the olergy and images The Shau-Kadoos pay revenue to the Burmese. Maing-maw was formerly established by a great Shan sawbwn who lived there in great state. The plains where formerly there was rice and other cultivation are still unwooded. There are some remains of the oity walls and ditch. If a oity be established here, it is likely to become great and flourishing.

Above Mning-mnw is the village of Pa-law, containiug some 20 or more bnuselholders of Shan-Tarokes, who live by rice cultivation. The men wear trousers like Chinese. Some wear their hair in a tuft, and some do not. They wear blaok jackets and black turbang. The women wear blaok olothe like lonegyees. They have, like the men, turbans on their heads. They wear bracelets and ear ornaments of silver. They build their houses like ponerna (Hindu) houses by raising up the ground. The men and women, young and old, drink liquor. They speak Shan nad Chiuese, and are Buddhists. They have two sects of clergy; one, calling themselves the "forest church," belnnve like the Burmese clergy; the other, calling themselves the " $P_{\text {reeh }}$ (feast or assembly) church," ent their rice morning and evening and drink spirits and smoke opium. These last act like the people, diflering from them ouly in their dress.

Above Pa-law are the villages of Pin-pa and Sanka, inhabited by Kachins. They live by cultivating kimims and tonngy/fs. They grow poppies nud make opium. These Kachius, because they live on the banks of the river, know a little Shau and Burmese. The Koohins, according to Kachin custom, build houses, and roof them as if they were roofing imaginary boats, the roofs being of the same form as those placed on large boats. The mea and women, young and old, drink liquor. The men also smoke opium daily. If they are attacked by sickness, they make offerings to the Nuts by the sacrifice of cattle, pigs, or poultry.

Above these villages, on a large plain, Kantees have establisled themselves in towns and villages. In Kaytee, the native country of these people, the hereditary sawbwa of some 5,000 odd households died, and his sons being unable to support themselves left their native place, and presented the late Burmese King with a live musk-deer, gold and silver flowers aud other gifts, and prayed to be allowed to become vassals without prejurice to the succession of the Loke-koon sawbwaship. Having obtained a Royal Order to establish towns and villages, and lire on the confines of Burnese territory, they established themselves some 10 houses with 50 odd houses of Shan-Tarokes in a villnge which they called Lweh-zaw on the Nam-yin stream. In 1239 (B.E.) the Knchins having made an invasion killed the Kantee sawbwa, and the remaining sons unable to stay there went and dwelt temporarily above Ka-cho. There, however, the elder brothor of the dend eawbwa killed the man who acted as Prime Minister. The son of the dend sawbwa accordingly presented his sister to the present Burmese King as a "Virgin daughter," and obtained a Royal Order to succeed aud establish himself, under the order previnusly given to his father, belew Ki-cho. These Kantees dress-the men as Burmese and the woman in cloths, like longyees, dyed blue and black. Their jnokets also are dyed blaok. 'Chay wear their hair-knots over the middle of their head and twist thoir hair round.

The city of Ka-oho was formerly established by a great Shan sawbwa, Haw-peing, who came from Theing-nee city. This city of Ka-cho was a great city, and hail to present yearly gold and silver flowers. A rond was opend to China, and there was iucessant traffic and trade of merchants of great and small degree by means of bnggage animals. A sawbwa of these Shans established another city above Ka-cho, which was called Wning-mav. Another city, Maing-an, was established by another of these sawbwas nbove Waing-maw. Another Shan sawbwa established another city, Maing-maw, below Ka-cho. Ka-oho being made the priacipal city, there were four cities on the eastern bank of the Irrawndly, Maing-maw, Ka-cho, Waing-maw, and Maing-na, established by four aawbwas living in great state after the Shan custom in places called by them "Haws," nud building walls and diteles. They thus dwelt for a long timo, submitting yearly gifts of gold and silver flowers, but pot revenue. Subsequeutly, during the reign of Aloung-pnya-gyee, when the Talaiug and Yodaya (Siamese) kingdoms were attacked and taken posession of, thay followed as Shan genernls with a contingent of a thousand men. Whon victory was obtained they aeked leare of the Burmese King nud went back. While trading nad trafficking in their own cities, they sent during Bodav Payn's reign, a Burman as their messenger with the usual gold aud silver flowers for submission to the King and expenses for the journey. But this Burnan tuok away the offerings and went elsewhere, wherefore the Burmese King gave orlers for an experition against them, saying that the four Shan sawbaws were rebels in that ther had not presented the usual tribute. Accordingly the Burmese King's generals set out with men, arms and ammunition, simultaneously captured the four cities, arrested the anwhwas, and caitured and killed mnny. old and young, men aud women. Thus the towns nud villages were destroyed; and although there are people living here now, there are not so many as belore: there are but few. The nity of Maing-maw oontains 20 odd households, Kn-cho city 30 ndd, Zee-gyoon 50 odd, Moke-Iway village 20 odd, Thagara 30 odd, Waing rmaw 40 odd, Ywadnw 20 odd, Thayagone 20 odd, Myitkyeo-na 30 odd, Noungtalaw 20 old, and Naing-ua 30 odd. Their inhabitants are Shan-Kadoos; and old and young, men aud women, are able to apeak Shan, Burmese and Kachiu. The Burmese

Goveramont has appointed a Thoogyee at enoh of these places, and over these Thoogyees a Myo-oke, called the Lay-myo-ole (Four-city Myo-oke).

The inhabitants aro Buddhists, building monasteries and worshipping the clergy and images. The Burmese take what revenue they think proper. They are governed also by different Kachin sawbwas. When a Kachin sawbwa makes demands for offerings to the Nats, they must give oattle, pigs, or poultry. When a Kachin dies also, enoh house has to furnish a man with a pyee of rice, a da, and a spade.

Of the above villages, the inhabitants of Ka-cho refuse to subject themselves to the authority of Kachin sawbwas: they pay revenue only to the Burmese Government. They till rice-fields extensively. The iulabitnats of the villages above Ka-cho are some of them rice cultivators. Some associate themselves with merohanta, interpret and carry on negotiations, and not as brokers. There are extensive plains here where formerly oultivation was carried on. If the city be again established, there is a likelihood of its being great and flourishing. The soil here is exceedingly good.

To the east of Waing-ma, on the Nam-yin stream, some 30 odd households of ShanTarokes live by cultivation. They are goverued by Kachin sawbwas, who levy an impost on the paddy cultivated. Theg have not to give any revenue to the Burnese Government. There are traces up to the present time of extensive paddy cultivation along the right and left banks of this stream.

Above Kyoulr-twain on the Irrawnddy, from Ayeing-dama up to the sources of the stream, the Kaohiu mountaius, gold is to be had by washing wherever a sandbank appears. Above Bamo from 'Tha-pan-bin to Haw- lan is wooded plentifully with teak trees. Thero is muoh excellent timber here along the course of the river up to the soucces of the stream where the Kachins dwell. India-rubber is very abundant. It is still more so where the Kachins are.

On the Irrawaddy river Slans live as far as Maing-na village. They pay revenue to the Burmese Government. Above Maing-ne there are no Shans or Burmans. The Burmese territory ends at Maing-na.

Above Maing-na the Burmese do not own territory. The Kachins severally dwell with hill-chiefs of their own. Going up the main stream of the Irrawaddy to the North-East, boate, eight fathons in length, can proceed about three miles, but beyond this they cannot. At this last boat-station there are no Shans or Burmans: there are only Kachins. Those only who understand Kickin can go, and they can only do so when the Kachin headmen come and meet and invite them. If they are not accompanied by Kachins, they cannot go. When the Kachins wish to come down, they construct bamboo rafts and come down. The river has two branches, - a right and a left. The left branch is called the Malee river, which menns the 'Big river.' The right branch is called the Mol-ka, which menns the 'Little river.' Above this Meh-ka or 'Jittle river' there are a grent many boulders, rooks and reefs. Regarding the rise of the water: when I was going up, the waters had risen on the 6th waxing Tabodwel; but when I had crossed over to the "Little river" on the 13th there were no indicatious of its rise. I also questioned the ferry-man at the ferry, and he stated that the waters did not then rise. When I was returning I did not see any rise. The rise was in the Ma-lee ('Big river'). The reason of the rise is this. At the sources of the ' Big' and 'Little' rivers there are snowy mountains. The snow on these mountains melting becomes water, and the Burmese oall the phenomenon yay-myoo-to (water-vapour-rise).

Above Maing-na dreell Kachins. First, sawbwa Souk-leo of the Ka-chaing mountains, theu Laing-yan-moo, anwbwa of Laing-yan-moo-poon, Nga Kan-too of Laing-pouk-poon, Patone-wa, sawbwa of Pouk-san-poon, Souk-kan, sawbwa of Moon-koung-poon, Souk-moon, sawbwa of Mara hill, Marakka-tantoo-nir, sawbwa of Kate-tway-poon, Touk-lone-ka, akyeewa of Pone-ga hill, Wa-win-wa, Sawbwa of Nan-seing-yiu-poon, Maing-doung-too, eawbwa of Marapoon. I'hese people, who call themselves Kansa Kachins, have one governing sarvbwa for each hill according to Kachin custom. As for their customs: followers, when they offer cattlo, pigs, or poultry to Nuts, must present a leg of each to their nawbwa. If the sawbwa be hereditary, young and old, women and men, attend to all his behests. When there arises any complication or quarrel between two hills, action is taken only when the sawbwa gives his commands. Young men from 10 yenre old always'go about provided with a da and a wallet. They wear waist.cloths some four or five oubits long, and for turbans they wear sha-brn-dec oloths, red or white. They get their jackets by going to the Shans, and exchanging for tham sessamum, India-rubber, or cotton. Some wear hair knots. Some cut their hair as low as their ears. The wotnen also wear cloths dyed black, four cubits long and two eubits wide, folded around their waists and tied with waist brods. The jackets are close fitting and over them they have a looser one with set oowries. On their waiste they have perforated cowries threaded on hoops of rattan, somo wearing three, some four, hoops. From their knees down to their oalves they wear hoops of rattan. Some women, the wives of the priucipal men, tattoo their legs from the kuce to the naklo. They wear also red or white lake-tan beads. The men daily smoke opium. Knuny and hazaur liquors are made by the women at home, and drunk by men nud women, old and young, daily. The men do not understand trade. If they have no salt or ngapee to eat they go to the places of the Shansand Burmese and get them by bartering with sessamum, cotton, India-rubber, arums, or yams. During the summer some of theso Kachins collect togethor in bands of 30,40 , or 50 and go to some Shan, Burmese, or Kachin village which they can overpower, which is distant some eight
nine, or ten days' journey, and besioge and set fire to it ; and when the inhabitnnts come out, the grown up men are out down and killed, and boys and girls from two to 11 years old are oaptured and exolanged for silver, opium, cattle, or nny other thing they require. They have no compassion for human beings : they ret lise brutes. If there be one wh, quarrels with anothar, he who is victorious kills him who is conquered, aud seizing his wives and children goes and eells them to another. If a man is fairly well to do, he has three or four slaves. Sawbwas and the chief men have eaoh, according to their power, 10 , $20,30,40$, or 50 odd male or female slaves. Regarding the work of the slaves: they do not have to work separately: they work together with the master of the house or his sons ancl diughters. When they eat nud drink also, the master of the house does not oat good foorl separately by himself; the slaves and the mastor eat together.

At Marnwa hill, the territory of the Kansa Kachins ends. Beyond this territory the Kan-loungs dwell, viz. Chief Sa-goo-noung on Kansan-poon, sawbwa Mawloowa on Mawloo-poon, sawbwa San-oung-lee on Mo-goung Maing-koung, abyeewa Pouk-leeshoung on Tone-poon hill, sawbwa Laboola on Salsoe-poon, sawbwa Laboo-shoung on Sin-poung-poon, sawbwa Saramatee on the See-hnin (snowy) mountains. The King-Sawbwa of the Kan-loungs, Maran-gyee of Nga-kone-la-poon, died and was succeeded by hie son, La-baing-ka-shin-teing-nau, who now exercises governing authority. The Kan-loung Kachins are so oalled , from being separated from the other Kaohius, their name meaning "noknowledged rebels." The sawbwn Ma-ran-gyee is more mighty than all other Kachin sawbwas. He is wiso in his speech ; his designs, conoeptions, and plans are grod; he has many adherents, and is able to govern many. Being acknowledged by many, he attaoked, oaptured, and killed the neighbouring sawbwas, and appointed such men as lie deemed fit to govern the his lieutenants. His possessions thus inoreased from one hill to another, lieutenants being appointed to govern eaoh hill.

The jurisdiction of (these) Kan-loungs extends on the east to Sakee-poon and Sanka. poon ; on the west beyond the Ma-lee or 'Big river,' on the south to Marawa hill, the territory of the sawbwa Souk-knn ; ou the north to the confnes of the Kanti territory. As these people form a large tribe, they commit raids year by year. When akout to make war, expenses in the shape of money have not to be given. The chiefs assemble large numbers of men, and by giving to each four or five tioals, as the case may be, of opium, cause these large numbers to follow and attack and destroy. When victory has been obtained, the grownup inbabitants of the conquered village are put to death, and the youths captured are sold by eaoh captor. Over the village thus overcome is placed a lieutenant to govern. These lieutenants do not, like the sawbwas of the Kansa tribes, exact lege of cattle or pigs from their subjects. Should there be any business, they have first to obtain the orders of the Kan-loung King, Labaing-ka-shin-teing-nan, before they can order or act.

As there is not sufficient spree for cultivation in the region inhabited by these people on account of their large numbers, they have to cultivate toungyas for three or four years successively in one spot. They do not get sufficient rice fur food, and have to supplement it with arums, yams, vetches, and maize. Some, not obtaining a harvest from one year to the other, have, during the rains, to eat arums, yams, \&e., instead of rice. They do not change their habitations from one hill to another. They are in the habit of dwelling in one plaoe. Living as they have done for a long time, there are few large trees on the hills. Not a Shan or Burman visits their country. If he wishes to visit, he can only do so by making friends with the sawbwa, and the sawbwa personally coming out and receiving him, and personally following or accompnnying him on his going and return.

Regarding the customs of these people: when a man and woman set up house, the man has to give to the parents of the woman, cattle, pigs, gongs, muskets, dlus, slaves, clothes (pasos), spears and money, and for his wife's use he has to give coral beads, tampines, jackets, broadeloths, \&.C., aocording to his circumstances. If he is not able to give them on the epot, he lias to give a guarantee that he will do so herenfter. After the gift, or the guarantee to make the gift, the woman is brought to the man's house, and the man has to feast the bringers of the woman with rice and ourry, and spirits and liquors. To the elders also he bas to give blue waist-oloths and sha-ban-dee turbans, das, or spanrs according to their degree. The man then shows the wowan all the work to be done in the house, and bids her do the work. After having set up house for a long period, when the man dies, the woman onunot set up house with any other: the brother, elder or younger, has to set up house with her. If there be no brother, the deoeased man's father (the woman's father-in-lnw) takes possession and makes ber his wife. In the sume way, if the elder brother dies, his wife is taked over by the younger brother, and cice versd. If the father dies, the son takes over his father's wives, except his own nother, and makes them his own If the first wife dies, the luaband groes to his decensed wilf's parents, and asks for another wife, and they must give him her elder or younger sister-a woman who is unmarried. If there be no sister to give, they lave to give a female relative. A relative of the wife's is greatly respected, being styled "father-in-law's relation." When any such come, the son-in-law has to give property in proportion to their worth. Husbauds and wives must not be at enmity with ench other; thero is no such custom as divorco. If the husband be bad, the wife cannot eeparate; and if the wife be lad, the husbayd canuot sepratate. If the husband wislies to do eo, he hins to give double the proporty he originally had to give her. If the woman wishos to do so, she has to give quadruple the amount oi proprerty originally given. If the man sets neide his wife aud tikes nusther, his head wife lhits the right to take possession of all the property of the younger wile, as
well as to sell her. The husband sells his ron's wife's sons and daughters to somebody else. If the father dies and the mother sets up house, not with her husband's relative, but with some man who is not connected with the father, the woman's son, saying that she does not pay heed to her character, sells her. The young unmarried men and women, so long as they are not brothers ond sisters, act as they please inside the apartments of the house.

Regarding the customs of these Kachins: when they snorifice cattle or pigs to the Nats in the house of a big or emall man, the skulls of cattle, with their horns, and the skulls of pige, are carefully lung up for people to see in the front passage leading to the house, in prosimity to the steps, or on the front post of the house. When a Kachin dies, be bas a splendid funeral, and nfter cattle, pigs and poultry have been killed, oll are feasted for three or four days with food and liquor. Young men and women come from one quarter to another, and surrounding the dead body dance and jump dny and night. The body is interred in some saored spot, which is surrounded with a trench about two feet broad and some three feet deep, and the centre heaped up like a small hill. The body is enclosed in a coffin. Posts are then erected and a roof carefully constructed. When the body is being interred, paddy, arums, flasks of lionng and spirits, das and wallets, are interred with the body, and on the grave a post is erected, and the skulls of cattle and piga are hung up for people to see.

On either side abore the nape of the neok a certain Kachin has two switches of hair of the thickness of one's thumb and some four cubits long, each of which encircles the head three times. The top hair-knot as generally worn is also worn (by him).

The Lieutenant named $\mathrm{Sa} \cdot \mathrm{g}$ goo-noung has n suake's head with horns of the thickness of the axis of a spiuning wheel and about one inch long.

The Mo-goung Maing-koung ewabwa, has a Hat black stone, like a test stone, in shape somewhat like the palm of a man's haud, from which something like oil oozes. If the side where there are projections like the thumb, the fore, middle, and little fingers be placed below, and the side like the base of the palm above, the side like the base of the palm goes down and the side like the fingers erects itself shortly after without man's intervention.

Having arrired on the 2nd November at Bumo, we made enquiries regarding the rond. We lelt on the 7 th by bont, and on the 13th stopped at the mouth of the Poot-tay. 1 got out at night and took observations of the stars. When we arrived at Haw-ka village ou the lith, I took observations of the stare, on the 16 th, 17 th, aud 18 th. Leaving on the 20th, we halted at Ka-cho on the 23rd. We got ashore on the 24th, and put up in the house of a Shan saya.

We subsequeutly spole like frieuds and sounded the saya about going to the sources of the Irrawnddy.

While living in this village I took observations of the stars on the 30th November; on the 2ud and 3rd December also I took the stars. On the 6th, 10th, and 11tin I took the sun. The villagers were at variance with the Kaclins, and at 8 o'clock at night the gates were closed, and every oue had in turn to patrol armed. Moreover, a tiger had come and carried of pigs, dogs and ponltry.

While consideriug how to go up, we met Nga Da, the Kaohin swabwa of Paroo hill, made friends with him, and acoompanied him; and having enquired about going to the sources of the Meh-ka, 'Little river,' and been informed by the Yaroo sawbwa that there was no one wio would go to the sources of the stream, we returned on the 23 rd to Ka -cho.

The Ka-oho villagers told us: "Do not go up the Kachin hills. The Kachins are a very wicked tribe. We from our youth upwards have never gone up. We dare not go. We are exceedingly afraid." But we said to the saya of Ka-cho and the Pin-ba sawbwa, come nand fullow us, they replied : "No one from our village dare go, but if you sayas wish to go, we will, if you pay us, follow you as partakers in your good or bad fortune." Accordingly we started on the 15th January, and artived on the 18th at Pouk-san lidl. When in that village, it began to rain, and at night we could not see the stars on acoount of the elouds. On the 21 st we took the sun ; we left on the 23 rd . On the 24 th we crossed the Mel-ka or 'SLittle river' and arrived at noon at the house of sawbwa Mareska-tnutoo-nnw on Kate-tway-poon, where we stayed awhile to oook and eat food. This sawbwa is not like other nen: he is a curious man. When young he had hair like ordinary people. When between 20 and 30, a confused mass of hair about the thickness of one's thumb grew on both sides of his head above the beginuing of his back hair. This confused, twisted hair was not like hair growing elsewhore on the head; it was exceedingly intertwined, and oould not be combed out. It grew day by day; and this man's age is 50 odd years now. This intertwisted hair is about four cubits long on eaoh side, and ench side is bound round his head three times. There aro altogether six encirclings of hair around his head. Ho lins moreover his other bair worn after the fashion of ull in a top. linot. His turban consists of nothing but his hair bound round.

With this Rawbwa also we spoke amicably, giving him what presents we had, aud making friends before we departed.

That day we slept at the house of nkyeerva Touklone-ka on Pone-ka hill. With the Kachius of this village nlso we spoke amioably, departing as friende. On the 25 th we slept at the sawbwn Souk-kan's house nt Marawa. Here too we apoke amicably with the Kaclins.

On the 20ith we slept at the house of sawbwa San-oung-lee, Mo-goung-maing-koung bill in tho territory of the Kan-louug Kaching. With the peoplo of the village we spoke
amionbly, gave presents, and made friends. On the 31st Jnnunry and tlie 1st February wo took observations, and on the 2nd arrived at aykeewa Pouk-lee-shoung's house on 'Tonepoon hill. Here we spoke amicably with the villagers, makiug evquiries as to the road, and so forth.

We accordingly had to oome back, and on the 23rd November we reached K_{a}-cho.

Extract from a Report on operations comnected with the surrey of Gilgit, by Lieut.-Colonem H. C. B. Tanner, Deputy Superintendent, Survey of India, duted 28th Decomber 1880.

Onseryations with a theodolite have been taken at 17 stations, of which three belong to last year's work. 145 points have been fixed trigonometrically, and were computed whilst the survey was in progress. When the final computations are dono, many of these points will be thrown out owing to their doubtful accuracy; and some now ones which have not yet been computed, will be introduced in their place. Owing to the rough nature of the mountain tops it has seldom been possible to use a stand, tho theodolite generally having been set up on a well built cairn with a flat slab at top. Over the cairn the stones have been piled up so that each of the stations are well marked for future identification. When I say that I hare fixed 145 hill penks, I do not wish it to be understood that the points have the accuracy of those hitherto accepted by the Gront Trigonometrical Survey. The apexes of some of my triangles are so acute, that an error of one minute at either of the ends of the base would make an error of ten miles in the position of the point. I hope, however, at some future time, to be able to improve the shape of the triangles, so that my points shall be true to a tenth of a mile. As to heights, a considerable number of peaks have been measured, but owing to cloudy weather some important ones have been observed for position only. On some of the peaks it was necessary to place the instrument at the very edge of giddy precipices, aud then, sometimes, one only of the verniers of the horizontal limb could be read, and that with considerable risk and difficulty.

Beyond the mouth of the Warshigum River I could only see one village, Khalti, on the Gilgit liver ; but in lougitude $72^{\circ} 55^{\prime}$ I fixed two grand peabs near the souroe of the Shundas Lake, between which I could see the dip of the valley. The lshkoman Valley drains a lerge area of glaciere, and joins the Gilgit River near Aish. The junction was mapped last year, and this season the course of the stream has been approximately traced for about 20 miles; beyond, it was lost to view amongst towering peaks covered with perpetual snow, which, from Guranjur station, the most northerly connected with the Great Irigonometricnl Survey of India, stretch right across the westerly, northerly, and enstern horizon. Suoh a landsenpe as was presented to me from that commanding station, 17,200 feet nbove the sea, I am not likely to forget. To the north, two thousand feet below me, was a sharply defined watershed, from which a couple of glaciers took their rise, smooth at their origin, with a few orevassea parallel to the face of the mountain; lower down, riven into deep chasms, with green ice piled up between them in fantastic shapes. Beyond this rose immense naked needles, and saw-like ridges, backed up by a mass of lofty mountains averaging from 22 to 25,000 feet. At their bases are fields of snow, and a network of glaciers. There is here no single snowy range such as is presented by a distant view of the Himalayas when eeon from the lower hille, but, instead, a vast wilderness of isolated mountains of every possible form, among which it is impossible for the surveyor to determine the lines of drninago. Far away to the west, more than a hundred miles distant, is the faint, cloud-like group round Tirich Mir, which attain from 24 to 25,000 feet: and to the north of that famous mountain, a rery remarkable double penk in the Hindu Kush of more than 24,000 feet. Carrying the eye to the right is another high, rough peak, also in the Hindu Kush ; and still further eastward, seen here and there, between the craggy mountains of Yasin and Mastuch, are the very rounded and smooth summits of the snowy mountains of the watershed of the Indus and Oxus. The view from Guranjur to the southnard is comparatively tame, for in the Kaghon Hills aud the Indus Gilgit Watershed there are few peaks of perpelual snow. One of them (T_{16} of the Grent Trigonometrical Eurvey), which is (aly 19,000 feet high, stands up conspicuously from amongst its neighbours; to the eastward are the bold, high peaks of the Indus, among which are $\mathbb{K}_{2,} 28,000$, and Nangaparbat neurly 27,000 feet. From Guranjur I observed n very high mountain to the north-west, which from ite colour could not, I think, have been less than 80 or 90 miles distant, and if this distance be approximately correct, it must lie somewhere between the two branches of the Oxus, north-west of Sirhadd. It is possible that it may be one of the group depicted by Colonel Gordon on the sketch facing page 131 in his "Roof of the World." I unfortunately oltained no second ray to it.

The only guide one has in estimating the distavces of remote snow peaks is their colour, far off snow always having a slight pink tinge, aud though I have been sometimes misled, and have made considerable errors in guessing the distances of momntains, yet I believe I nom right in suppoing that I have seen two rery bigh peaks beyond Chitral, and one beyond Sirbad. The rounded forms of high snow-capped mountains is due to the constant piling up of onow on them when their summits nre not too sharp; in some cases the apparent beight of mountnine may be inoreased by hundreds of feet; for in high altitudes, where the cold is intense, even the rays of the sun, powerful as they are in a highly rarified atmosphero, take several days even to form a hard covering over the freshly fallen snow. Even after two clear dnys I have seen the powdered soow flying in olouds off the upper slopes of Nangaparbat, and I doubt if snow melte at all at such an altitude.

Such mountains as K2, Nangaparbat and Kakhaposhi, are tos sharp to allow the snow to lio on them in auy quantity; it alanost immediately descends to a lower altitude in the form of aralanches and then it gradually hardens and becomes glacier ice ; but the great group round Tirich Mir have rounded tops, and this renders them eometimes diflicult to intersect with accuracy.

In my last year's report I explnived the difficulty in surveying the grent flattened range which lies between the Indus and the Gilgit rivers. We have now obtainerl nearly all the topography of that remarkable region which is situnted on the northeru slope of ite ill-defined watershed; and to the eastward, n suall portion of the southern slope as well. It is an immense tangle of exceedingly sharp ridges, whioh zigzag about in the most perplexing manner. 'There are hundreds of peaks of uearly the same height, and so like each other, that after moving a few miles they cannot be recognized. I have eight stations in this tract which vary from 15,000 in the east, to 17,500 in the west Towards the hend-waters of the Gilgit river the peaks assume bolder forms, and attaiu to 22,000 feet. One very marked feature in this range is the extraordinary number of mountain-lakes or tarns, which are found as many as three or four together at the sources of all the small feeders. I was encamped for a woek or more at the head of a high valley, and here were three lakes, with a fourth in course of formation. Opposite my tont was a small glacier with one orevasse only, and a small moraine. The glacier was busy night and day in flinging stones down into the revine and damming it up. Alrendy it had formed a broad and extensive marsh, which at some future time will be a deep sea-green lake like the othere. The uppermost of the tarne, which even in August was covered with little icebergs, had been made by the scooping action of ice, but the others were pent up by the moraines of small side glaciers which, owing to olimatic change, now no louger exist. The lake region has an altitude of about 14,000 feet, and is wild and desolate owing to the scanty herbage and to the waste of mountain debyis which is piled around; sometimes, when backed by high oliffs, theso still, grean pools are highly picturesque, and some fev again, when surrounded by high erags and lofty rock needles, are almost grand. The Dards of Gilgit, who never asceud above the range of the Ibex, and who were very reluctant to necompany me into these wild solitudes, say that these holes and tarns were once the abodes of snakes and monsters, which were destroyed by one of their saints in years gone by. And I must confess that, without some knowledge of the aotion of ice, their existence in the minds of people who believe all the high and innccessible places in the south to be frequented by spirits and fairies, is likely to be attributed to supernatural sauses.

Some of the slopes abore the level of the lnkes, when seen from a distance, often present the appearance of downs of grey sand, but a closer view shows them to bo composed of huge wedges, slabs and blocks of volcavio rock. Sometimes there occur whole ridges, of remarkably rounded form, which, from top to bottom, are made up entirely of such débris. A heap of broken metal, carefully patted down and rounded over, ready to be used for macadamizing our roads, is an exact miniature representation of these curious ridges. I, myself, cannot understand how these mountains have been so completely crushed and thus emoothed over, leaving not a single trace of the original rock in sith. In these regions the surveyor has often to travel miles over these dreary expanses of slantered rocks, which are often ouly just balanced one on another, and has to use the utmost agility to avoid being crushed benenth the tottering boulders which are ready to topple over at the slightest disturbance. When covered with even a thin covering of snow they are almost impassable and highly dangerous to cruss.

I must not omit to mention the most interesting point in all this wild mountain regiou, which, in Septomber lnst, after two unsuccessful attempts, I was so fortunate as to reach. I had long wished to obtain a nenr view of the northern slopes of Nangaparbat and of its glacier valleys, which join the Indus opposite the independent settlement of Gor, and after a most perilous passage over a narrow, rugged ridge, surrounded by enormous precipices, which tried my norves to the utmost, I found myself confronted by what is probably the most maguificent snow view on the globe, embracing ns it does a slope of very nearly 24,000 feet (vortical mensurement), with its glaciers, snow-fields, ice-cliffs, and jagged needles of naked rock extending from the summit of this king of mountains down to the Indus, which flows in a deep channel at its bnse. My feeble peu is unerual to the task of giving any adequato description of this superb and impressive view which I contemplated from the edge of a tremendous precipico, whose summit is 16,000 fect above the sea, and which rises sheer and unbroken from the forests and vineyards of Gor, situated an immense depth below me.

The sharp penk of "Deo Mir," the "Mountain of the Gods," ns it is called by the Dards, was distant just 23 miles, and the forest, which was seen as a sharply defived narrow belt, in which tho pines could ouly just be distinguished, was less than half that distance ; whilat the Indus, with its brown and sterile bauks, was only soven miles off.

Without being a botavist, I have been able to make a large collection of specimens for my botanicnl friende, and I may as woll give here a few facts relating to the distribution of vegetation in Gilgit. I will mention first that most useful tree the pencil cedar, which has a range in altitude greater than any other treo, for I have found it continuously from 14,400 feet down to 6,000 . At the camping ground of Molcha, 8,000 feet above the sen, near Minowar in the Gilgit Valley, I found one speoimen of this tree with a girth of 30 feet, measured 6 fect above the ground. It is still vigorous and healthy, and without blemish, and is supposed to be 300 years old, and is said not to bave increased preceptibly in size
within the memory of man. Its oiroumference exceeds by many feet that of any other of its kind I have met with.

The pimus cxcelsa* has a far less limited range, for it grows on the Gilgit slopes only, where the melting snows yearly leave a deposit of soil, with moisture sufficient to sustain vegetation throughout the summer; its range is from about 9,500 feet to

- The larecst pinus excelsa I have mipastured had a girtl of $1:$ feet, and a lifight of alout 130 or 140 feet.

> 12,000, and that of the abies smithiana, which is found in
less profusion, has narrower limits. The deodar does not grow in Gilgit, nor have I ever seen the picea rebbiana. The edible pine, pinus gerardiana has already been stated by Drew to grow in Astor; it also is found round Chaprot, and thick forests of it grow just below Gor, end add greatly to the picturesque appearance of that settlement, for were it not for those trees, the slcpes. which sre too dry to support any other vegetation, would be brown and burnt up, like all the low ranges in Gilgit below 9,000 feet. The edible pine, chilgos of the Afghans, may be said to extend from 7 to nearly 10,000 feet.

The birch is very common throughout Gilgit, it overlaps below into the belt of pinus excelsa, and grows as high up as 12,500 feet. Growing among the birch, and extending some hundred feet above it, is a very useful and widely spread shrub, whioh, with the exception of the pencil cedar, is the best fuel one meets with in these mountains; it likes marshy places, has brown, smooth, bark, and bears a small white flower which in seed time gives out a fine silly cotton. Though probably used by every Himalayan traveller, yet I hnve been unable to ascertain its botanical name.

The upper limit of Gilgit vegetation is pretty constant at 16,200 feet, where sometimes a few hardy flowers and a conrse grass may be met with in favourable situations. Above this the rocks are stained with grey and yellow lichens, but how high up the latter extend I know not. Besides the trees whose ranges I have above laid down, I should mention the tamarish, which appears to thrive as well at 6,000 feet in the dry barren valleje of Gilgit, as it does amongst the oozy mud islands at the mouth of the lndus. It may grow above 6,000 feet, but 1 have not seen it myself beyond that. In the narrow belt of vegetation which contours so exactly round the Gilgit mountains are many wild fruits; wood straw. berries abound, and at a slightly higher altitude are capital red raspberries; besides these, we have a small, sour, hairy, gooseberry, and a very nice green one, brushed with pink on one side. There are also black currants which have the flavour of red. On the margins of the watercourses in the low valless there is a small sweet fig which is very good, and in the spring a red raspberry of insipid taste. I must refer those who require information regarding the flowers of Gilgit to Mr. Duthie, to whom I have given a large collection of dried specimens.

There are no onks in Gilgit, and the wild olive is very rare ; the slopes, which in other regions are olothed with those troes, being here sprinkled with that detestable plant the wormwood, with its overpowering smell. Its range is from 5,500 feet up to 11,000.

Before olosing these hasty notes, I would wish to say a few words on the oountry beyond Eunza, which I was so lucky as to see from two of my high stations. My view extended to the watershed of the Yarkund and Shimshal rivers, where I observed two snow penks of about 21,000 feet, just peeping up behind a wonderful array of lofty needles, amongst which-though I could not determine exactly at what point-the Hunza river makes its way. The Shimshal Famir lies between the two snow peaks and the needles, and if my very feeble fixing of the former be at all correct, then the area assigned to that Panir on the map is far too great. It is hopeless to expect any further extension of nur trigonometrical survey in that direction, though perhaps 1 mny be able to improve the shape of my excessively acute triangle, for my rays were taken through n narrow gap between Rabhaposhi (25,500 feet), on the western extremity of the great northern barrier of Cashmere, and a mountain of nearly equal height on the eastern end of the high range which separates Gilgit from Little Gubjal.

In the present disturbed state of the Dard races round Gilgit, it is impossible to say what survey operations we may hope to carry on during next summer, but should the Gilgit country be closed to us, a very considerablo amount of aurvey may yet be achieved, by observing with a theodolite from one of the high points east of Bunji, and from another on the northern slopes of Nangaparbat west of Astor. If stations of over 19,000 feet could be reached, independent observations to all my high mountains towards Chitral could be obtained, and probably others could be fixed as well; but I must give a word of cantion to any one who may attempt this task, and who may not have had experience in fixing high remote peaks. Tirich Mir, the greatest of the western mountains up to this time known, appears from my highest stations west of Gilgit as an exceedingly insignificant hill; indeed, until I had computed my triangles, I was not aware that I had been so fortunate as to fix that important peak; but from the Buaji range, distant over 160 miles from it, it would be exceedingly minute, and unless its position were exactly known to the obserrer before hand, it might escape his notioe altogether. I may conclude by adding that though Tirich Mir is the highest mountain fixed by me in the far west, yet it is not nearly so important to geographers as the double peak in the Hindu Kush, about ten miles sonth-east of Varg in the Oxus valley. This mountain is over 24,000 feet, and has two well-defined points which rise out of two roundish symmetrionl hills, which are nearly hemispheres. Though I have seen no notice by travellers of this commanding mountain, yet from its great height, and its position, probably in the very watershed of the Hindu Kush, it must be visible over a wide area to the inhabitants of Badakshan and Wakhan.

Extract from the Narrative Report, daled $23 r d$ October 1880, of Captain A. W. Baird, r.e., in charge Tidal and Leveling Operations.

EVALUATION OF TIDAL CONSTANTS

The values of the several tidal constants which have been determined for various ports, from the harmonic analysis of all the observations whioh have been taken during the past year, will now be given.

The tidal constants are divided as usual into two groups-one composed of the short period tides, the duration of which in no case exceeds 24 hours; the other of long period tides, whose duration ranges from a fortnight to a year.

In the harmonic theory of the tides, the principal constituents of the short period tides are represented by fictitious stars, moving in circular orbits at certain known velocitiesthe argumonts of motion-in the plane of the Equator. They are usually indicated by the letters $\mathrm{S}, \mathrm{M}, \mathrm{O}, \mathrm{K}$, \&e. Each of these is, in its turn composed of a number of tidnl constituents, also moving in circular orbits, but with different velocities, which are mutually related, those of the second and subsequent constituents being twice, thrice, or some integral multiple of the first. Their periods are deterniued in the following manner. When the revolution of the fictitious star is performed in, or about, 24 hours, the primary period is the one corresponding to the argument of motion of the star; when it is performed in, or about, 12 hours, the primary period corresponds to twice the argument of the motion of the star; the subsequent periods are fractions of the primary, eorresponding to the multiples of the velocity. The tidal constituents after the first are sometimes called semi-diurnal, terdiurnal, quarter-diurnal, and so on, and the smaller of these are usually called Otertides.

Every tidal constant is expressed numerically by two constants, viz. R , and ϵ. R denotes the linenr value of the amplitude, viz. the semi-diameter of the orbit, which if equal to half the range between the highest and lowest levels of the constituents; e denotes the angular value of the "epoch;" it miny be defined to be the mumber of $5 \frac{1}{8}$ riparts of the period-or number of degrees of the orbit-whioh any tidal constituent has still to execute from the instant when the fictitious stor orosses the meridian of the place of observation to the instant when the constituent reaches its maximum.

The constants \mathbf{R}, and ϵ, of the tidal constituents, are respectively distinguished by the subscripts $1,2,3$, representing the relations of their periods to that of the primary period.

Three only of the fictitions stars, viz. S, M, and K, have more than one constituent of sensible magnitude. The constituent which causes any fictitious star to produce its greatest effect on the sea-level is rarely the first, and more frequently the second. The greatest effect of any aingle star is invariably produced by R_{2} of M; afterwards usually by R_{2} of S, and R_{1} of K, to the last of which the phenomenon of Diurnal Inequality, which is so marked a feature in Indian tides, is chiefly due. The first significaut constituent of MS is of the fourth period, amplitude R_{4}

The first constant in the table of constants for each port is \mathbf{A}_{0}, which signifies the height of the mean level of the sea above the level corresponding to the zero of the gauge.

It may be here said, once for all, that the values of the linear quantities A and h throughout these tables are invariably expressed in English feet.

VALUES OF THE TIDAL CONSTANTS AT ADEN.

Lat. $12^{\circ} 47^{\prime} \mathrm{N}$., Long. $44^{\circ} 59^{\prime} \mathrm{E}$.
The following are the amplitudes and epochs evalunted for Aden observations, 1879-80 :-Short-period Tides.

Long-period Tides.

Lunar monthly	tide	$R=0.033$	$4^{\circ} \cdot 6$
fortnightly	,	$R=0.062$	$\epsilon=354^{\circ} \cdot 5$
Luni-solar	"	$R=0.014$	$42^{\circ} \cdot$
Solnr annual	"	$R=0.404$	$2^{\circ} \cdot 7$
semi-annual	"		...	$R=0.110$	$\mathrm{e}=94^{\circ} \cdot 2$

The mean level of the sen (A_{0}) is slightly lower than in 1877-78.
The main lunar tide, R_{2} of M , is slightly greater than in $1877-78$, viz. 1-56 agninst 1.42 . The main solar tide has also a somewhat greater amplitude, viz. 0.69 against 0.66 . The epoch of both the main tides agree well with those of 1877-78.

With reference to the main diumal tide R_{1} of K , the amplitude is 1.37 against 1.32 of 1877-78, both of which are very high in value; its epoch also agrees well with what was formerly found.

The amplitudes and epochs of all the other tidal constituents agree fairly well with what was formerly obtained; but for the long period tides, the Solar Annual is 5 per cent greater in amplitude than for 1877.78, while the solar semi-annual is 50 per cent less.

The proportion between the two main tides for the yenr under review is about 1 to 0.45 , which is very nearly the same as was found for 1877-78, when the proportion was almost exactly the same as that given by theory.

The proportion of the smaller lunar elliptio semi-diurnal tide (L), to the main lunar tide, is about one-hnlf what theory would assign; whereas for 1877-78 the proportion nearly ngreed with the theoretical value.

The proportion between the larger lunar elliptic semi-diumal tide (N) and the main lunar tide, although less than in 1877-78, is still greater than the theoretical proportion, viz. $0 \cdot 28$ against $0 \cdot 19$.

The proportion of the evectional semi-diurnal tide (λ), to the main tide, is less than was found for 1877-78, but still it is greater than the theoretical proportion.

With regard to the other evectional tide (v), the proportion to the main tide is about one-tenth, which is (3) three times as great as theory would assign, and 40 per cent greater than in 1877-78.

The variational tide (μ) has precisely the same proportion to the main tide as in 1877-78, which is more than double what theory gives.

The luni-solar declinational semi-diurnal tide (\mathbf{R}_{2} of \mathbb{K}) is exactly the same in proportion to the main tide as obtained in 1877-78, whioh is slightly greater than the theoretical volue.

The lumi solar compound semi-diurnal tide (2 SM) in its proportion to the main tide is slightly less than in 1877-78, but agrees fairly well with what was obtained at Bombny.

But the main feature of the Aden tides is the large proportion which the diurnal components berr to the main tide, and this is again shown by the analysis of the 1879.80 observations.

The proportion of the solor diurnal tide R_{1} of S is very nearly the same ns that in 1877.78, which was double what obtains at Bombay, and about 50 per cent greater than that at Karrachi. It is remarkable that the proportion of this tide at Kárwár is nearly the same ns at Aden, and only in two instances have the values obtained at other ports exceeded this proportion, viz. at Tuticorin, and Paumben, (where it was 6 per cent of the main tide, while at Aden, and Kárvár it is about 5, and 4, per cent respectively.

With regard to the solar diurnal tide (P), the proportion to the main tide is about 25 per cent, similar to what was found in 1877-78, a value which is very much grenter than at any other Indian port, exoept perhaps Beypore, where the proportion is 21 per cent of the main tide.

With regard to the luni-solar declinational tide (K), the same remark applies as in 1877.78, it being nctually nine-tenths of the main tide-n magnitude which is umprecedented. -

The proportions of the other diurnal tides $0, J$, and a to the main tide all ngree well with the proportions in 1877.78; that of 0 is remarkable at Aden, being nearly 50 per cent of the main tide, the usual value at other Indian ports being between 20 and 30 per cent.

The proportion between P and O comes within the limits given by theory; that between J and Q is slightly greater than in 1877.78, and both are much higher than the maximum proportion given by theory. The proportion between O and K is nearly the same as 1877-78, which, although less than the minimum proportion given by thoory, agrees well with the proportions obtained at Bombay, and Kárwár.

Tho overtides of S and M at Aden are all small, and agree well in their proportions to the main tide with what was found in 1877-78.

With regard to the long period tides, the proportions to the main tide (oxeept for the solar nunual and solar semi-annual) are much the same as in 1877-78; the solar annual tide being slightly grenter, and the eemi-annual only half, in proportion to the main tide, to then found in 1877-78.

The solnr annual tide at Aden is very great, but is exceeded in value (in proportion to the main tide) at Beypore, and Vizagapatam, at which latter place it actually attains the unprecedented proportion of half tho main tide, thereby exceeding the main sotar semidiurnal tide.

(47)
 values of the tidal constants at kurrachee.

Lat. $24^{\circ} 53^{\prime}$ N., Long. $67^{\circ} 0^{\prime} \mathrm{E}$.
The observations from which the following tidal constants have been deduced, were tnken by the small self.registering tide-gauge working under the supervision of Mr. Price Port Engineer, and have hitherto been unreduced:-
S.

	1873.74.	1874.75.	1875-76.	1876.77.	1877-78.	1878.79.
A, ...	7.079	7.152	7153	7.134	$7 \cdot 207$	7:331
$\mathrm{H}_{1} \ldots$	0.083	0.076	0.079	0.087	0.088	0.044
$\epsilon_{1} \quad \ldots$	$155^{\circ} 03$	$152^{\circ} \cdot 50$	$150^{\circ} 45$	$156^{\circ} 98$	$180^{\circ} \cdot 85$	$186{ }^{\text {c.94 }}$
\mathbf{R}_{3}	0.943	0.949	0.953	0.936	$0 \cdot 961$	$0 \cdot 9.22$
$\boldsymbol{\epsilon}_{2} \quad \ldots$	$321^{\circ} 19$	$310^{\circ} .93$	$319^{\circ} 96$	$318{ }^{\circ} .09$	$322^{\circ} 14$	$324^{\circ} 14$
$\mathbf{R}_{4} \ldots$	0.010	0008	0.000	$0 \cdot 012$	0010	0.009
$\epsilon_{4} \quad \cdots$	$325^{\circ} 62$	$6^{\circ} \cdot 42$	$353^{\circ} \cdot 25$	$17^{\circ} 21$	$23^{\circ} \cdot 43$	$29^{*} \cdot 43$
$\mathbf{R}_{6} \quad .$.	0.004	0.007	0.009	0.006	0.006	1).008
$\epsilon_{\boldsymbol{f}_{0}} \quad \cdots$	$311{ }^{\circ} 99$	$308^{\circ} 53$	$294^{\circ} 60$	$259^{\circ} 05$	$274^{\circ} \cdot 57$	$291{ }^{\circ} 09$
$\mathbf{R}_{8} \quad$.	0.000	0.003	0.002	0.001	0.002	0.001
$\epsilon_{8} \quad \cdots$	$26^{\circ} \cdot 57$	$265^{\circ} 60$	$282^{\circ} 53$	$206{ }^{\circ} \mathrm{67}$	$254^{\circ} 06$	$128^{\circ} \mathrm{O3}$
	Mr.					
H_{1}	0.083	0119	$0 \cdot 112$	0.022	0.029	0.075
$\epsilon_{1} \quad \cdots$	$146^{\circ} 08$	$143^{0.24}$	$72^{\circ} \cdot 80$	$310^{\circ} \cdot 00$	$357{ }^{\circ} \cdot 19$	$312^{\circ} 63$
$\mathrm{R}_{2} \quad \ldots$	$2 \cdot 406$	$2 \cdot 434$	$2 \cdot 457$	2386	2.391	2-462
$\mathrm{E}_{2} \quad \cdots$	$294{ }^{\circ} 34$	-2920.79	$291{ }^{\circ} 65$	$290^{\text {c. } 24}$	$290^{\circ} 29$	$294{ }^{\circ} 78$
$\mathrm{R}_{3} \ldots$	0.029	0.025	0035	0.035	$0 \cdot 052$	0.046
$\boldsymbol{E}_{3} \quad \cdots$	$332^{\circ} 61$	337×31	$345^{\circ} \mathbf{4 7}$	3420.39	$325^{\circ} \cdot 18$	$325^{\circ} \cdot 69$
$\mathrm{R}_{4} \quad \ldots$	0.021	00019	0.023	0018	0.023	0.030
$\epsilon_{4} \quad \cdots$	$12^{\circ} \cdot 28$	$9^{0.41}$	$15^{\circ} \cdot 25$	$352^{\circ} \cdot 12$	$13^{\circ} \cdot 61$	$3588^{\circ} 69$
$\mathrm{n}_{0} \quad \ldots$	0.044	0.051	0.049	0.044	0.018	$0 \cdot 0.8$
$\boldsymbol{\epsilon}_{8} \quad \cdots$	$213^{\circ} 06$	$214^{\circ} \cdot 44$	$207^{\circ} 00$	$205^{\circ} \cdot 18$	1920.98	209 ${ }^{\circ} \mathbf{7 0}$
$\mathbf{B}_{8} \quad$.	0.003	0.005	0.005	0.005	0.005	0004
ϵ_{8}	$160^{\circ} 78$	$199^{\circ} \cdot 87$	$\stackrel{298}{ }{ }^{\circ} 26$	$279^{\circ} 15$	247° - 88	$262^{\text {P.06 }}$
	\boldsymbol{K}					
R_{1}	1.379	1.426	1442	1'403	1'406	1'418
$\epsilon_{1} \quad .$.	$141^{\circ} \cdot 96$	$138^{\circ} 04$	$136^{\circ} \cdot 34$	$132^{\circ} 79$	$130^{\circ} 98$	$131{ }^{\circ} 39$
$\mathrm{R}_{2} \quad \ldots$	0.336	0.317	$0 \cdot 344$	$0 \cdot 361$	$0 \cdot 391$	$0 \cdot 288$
ϵ_{2}	326 ${ }^{\circ}$. 63	$322^{\circ} 93$	$321^{\circ} 63$	$314{ }^{0} 11$	$305^{\circ} \cdot 12$	316 ${ }^{\circ} \cdot 30$
	0.					
$\begin{array}{ll}\mathbf{B}_{1} & \ldots \\ & \ldots\end{array}$	0.736	0756	0.767	0.762	0.760	0.763
	$309^{\circ} 85$	$311{ }^{\circ} 79$	$314^{\circ} 98$	$317^{\text {. }} 05$	$320{ }^{\circ} 65$	$326^{\circ} 28$

P.

2SM.

Regarding the values obtained for the short-period tide for Kurrachee 1878.79, the following remarks are applicable:-

The value of (A_{0}) the mean level of the sea, $7 \cdot 331$, is the highest yet obtained at this place.

The amplitude of the main lunar tide (R_{2} of M) is higher than was obtained in the two previous years, but less than any of the values from 1868 to 1872 . The value of the main solar tide (R_{2} of S) agrees fairly well with that obtained for the four previous years. The value of the main diurnal tide (R_{1} of K) is also fairly accordant with the last four years' values.

The proportion between the two main tides R_{2} of S , and R_{2} of M , (0.375) agrees with the mean proportion obtained from 1868 to 1873 , which is less than was found from 1874 to 1878 , and this proportion falls short of the equilibrium theoretical value (0.476).

The proportion of the smaller lunar semi-diurnal tide, \mathbf{L}, is 0.15 of the main tide, which is much less than was formerly obtained in Kurrachee, and is only about half the theoretical proportion. With regard to the larger oomponent of the lunar semi-diurnal tide N , the reverse is the case, the proportion being 0.265 , which is greater than has hitherto obtained at Kurrachee in former years, and in each of the former years the proportion was greater than the theoretionl proportion 0.192.

With regard to the lumar perturbation tides $\lambda_{,} \nu$, and μ, the first agrees fairly with forner values, which wore about three times the theoretical; the second, ν, also agrees fairly well with former values, viz. about double the theoretical proportion; but the third, μ, is much less than was formerly found, being 0.016 of the main tide for the year 1878-79, the theoretical value being 0.022 .

With regard to the solar elliptio semi-diurnal tides R , and T , the former would appear to be excessive in its proportion to the main tide, being 0.028; wherens in all former years the proportion was about 01 of the main tide, and the theoretical proportion is ouly •004. On the other hand, the larger component T agrees well with the theoretioal proportion (0.028), while in former years it was almost alwnys too great.

The luni-solur deolinational semi-diurnal tide \mathbf{K}, agrees fairly well with the theoretical value, ins was nlso the case in former years.

With regard to the diurual tides, R_{1} of S is only about one-hnlf in proportion to the main tide of what was formerly found at Kurrachee; but R_{1} of $\mathrm{P}, \mathrm{R}_{1}$ of $\mathbb{K}, \mathrm{R}_{1}$ of $0, \mathrm{R}_{1}$ of ${ }^{J}$. and R_{1} of Q all agree well with their former proportions to the main tide, while R_{1} of M is much grenter thrn in the two preceding years, but is fairly concordant with the proporfions obtained previously to those yenrs.

The proportions of the overtides of S and M to their main tides, agree well with those formerly obtained.

With regard to the long period tides, their amplitudes and epochs heve not been evaluated, as the daily differences were not considered reliable.

With reference to the long-period tides for 1877-78, the lunar monthly tide has an amplitude about double of that of former years. The solar annual tide is less in amplitude than is usually found at Kurrachee by about 10 per cent, if the value for 1875-76 (which wes abnormally small) is neglected. Its epoch, however, is much later than usual, being about the middle of July. The solar semi-annual tide is only about half as great as obtained in the previous four years ; its epoch also differed grently from that of the previous four years, although it agrees with the value obtnined in 1870-71.

VALUES OF THE TIDAL CONSTANTS FOR KARWAR, 1879-80.
Lat. $14^{\circ} 48^{\prime}$ N., Long. $74^{\circ} 5^{\prime} \mathrm{E}$.
The following are the amplitudes and epochs evaluated for the
Shorl period Tides.

Long period Tides.

Lunar monthly	\ldots	\ldots	\ldots	$R=0.058$	$\epsilon=14^{\circ} \cdot 3$
fortnightly	\ldots	\ldots	\ldots	$R=0.070$	$\epsilon=340^{\circ} \cdot 9$
LuLi-solar	\ldots	\ldots	\ldots	$R=0.023$	$\epsilon=269^{\circ} \cdot 5$
Solar annual	\ldots	\ldots	\ldots	$R=0.344$	$\epsilon=307^{\circ} \cdot 3$
", semi-annual	\ldots	\ldots	\ldots	$R=0.083$	$\epsilon=201^{\circ} .8$

The value of (A_{0}) mean level of the sea for $1879-80$ is slightly emaller than in the preceding year, being 5.541 feet above zero agninst 5.650 for 1878.79.

The value of the main lunar tide (\mathbf{R}_{2} of \mathbf{M}) is very slightly greater in amplitude than was found in 1878-79: its epoch agrees almost precisely with that of the previous year.

The value of the main solar tide (R_{2} of \mathbf{S}) is almost precisely the same as that for 1878-79: its epoch too also agrees well.

The main diurnal tide (luni-solar R_{1} of K) is slightly less in amplitude than it was in the preceding year: ite epoch, however, agrees well.

The solar elliptio semi-diurnal tides L and N are respectively less and greater in smplitude than what wns found in 1878-79, although their epools agree fairly well with what was found for the previous year.

With regard to the moon's perturbation tides (λ, ν, μ), there is a considerable difference both in amplitude and epoch for all three from what was found in 1878-79.

The lunar declinational diurnal tide (O) is somewhat less in amplitude, while the solar diurnal declinational tide (P) is somewhat greater than was found in 1878-79.

The elliptic diurnal tides (J and Q) are both grenter in value than obtained in 1878-79: their epochs, however, agree well with those of the former year.

With reference to the long period tides for Karwar for 1879-80, the solar annual tide has an amplitude of 0.34 feet against 0.17 of the previous year, that is, double its value in the
preceding year. The same remark applies to the solar semi-annual tide, which has an amplitude of 0.083 ngainet 0.045 for $1878-79$.

The epoch of the solar annual tide occurs about 14 days before the epoch as found from the 1878-79 observations, i. e. about the 25th January, while for the former year it wns about the 8th February.

The proportions between the two main tides agree fairly well with the proportion for the previous year, and the proportions of the lunar elliptio semi-diurnal tides also agree with those for 1878-79, that of L being. precisely the same as the equilibrium theoretical proportion, while that for N is slightly in excess.

The proportion of the evectional semi-diurnal tide (λ) to the main lunar tide, is much less than is given by theory, while that for the other lunar tide (ν) is about double the proportion of that given by theory.

The proportion of the variational semi-diurnal tide agrees fairly well with the equilibrium theoretical value.

Both of the solnr elliptic semi-diurnal tides (R and T), are almost exnctly the same in proportion to the main lunar tide ne the equilibrium theoretical proportion.

The proportion of the luni-solar declinational semi-diurnal tide (K_{2} of K) agrees well with the proportion for the former year, which again agreed exactly with the equilibrium theoretical value.

The proportions of the diurnal tides R_{1} of S, R_{1} of P, R_{1} of K, R_{1} of O, and R_{1} of Q, all agree fairly well with the proportions of the previous year ; but the proportion of the diurnal tides (\mathbf{R}_{1} of M and \mathbf{R}_{1} of J) are somewhat different, the former being about half and the latter more than double of the proportions found in 1878-79.

The proportion of P to 0 is slightly different from that in 1878-79, but both the proportions come well within the extreme limits given by theory.

The proportion of J to Q is much greater (0.584) than was found in 1878.79 (0.413), while the maximum proportion given by theory is 0.417 .

The proportion of O to K , elthough exactly the same as that found in 1878-79, is much less than the minimum proportion given by theory ($0 \cdot 657$).

The proportions of the overtides of S and M are all small, and ngree fairly well with those of the previous year. This remark also applies to the Helmholtz tide (MS), which is 0.012 of the main lunar tide.

The proportion of the long period tides to the main lunar tide call for no special mention, except the solar annual and semi-annual, both of which are twice as great in proportion as was found in 1878-79.

VALUES OF THE TIDAL CONSTANTS FOR BEYPORE, 1878-79.

Lat. $11^{\circ} 10^{\prime} \mathrm{N}$., Long. $75^{\circ} 49^{\prime} \mathrm{E}$.

The value of the mean level of the sea for the 1878.79 observations was found to be $5 \cdot 385$ feet abnve the zero of the gauge, or 14.323 feet below bench-mark A, and 23.076 feet below bench-mark \mathbf{C}.

The following shows the amplitudes and epochs of the tidal constituents as determined from the 1878-79 observations for Beypore :-

Short period Tides.

Long period Tides.

Lunar	manthly	tide	$R=0.069$	$6^{\circ} \mathrm{O}$
"	fortnightly	"	\ldots	...	$R=0.106$	$=355^{\circ} \cdot 7$
Lumi solar	"	"	\ldots	...	$R=0.065$	$\epsilon=230^{\circ} \cdot 0$
Solar annua		"	$R=0.307$	$\varepsilon=311^{\circ} \cdot 2$
					$\boldsymbol{R}=0$	$=226$

The proportion between the two main tides (R_{a} of M and R_{a} of S) is 0.371 , whioh agrees with what was found at Kárwár, but is considerably less than the theoretical proportion.

The small lunar elliptio semi-diurnal tide (L) agrees fairly well in its. proportion to the main tide with what obtains at other Indian ports, and is a little less than the theoretical proportion.

The proportion for the larger tide (N) is more nearly ncoordant with the theoretioal porportion than was found at the northern ports of the Bormbay Presidency, but is still a little greater than the theoretionl proportion, while at the southern ports, Paumben and Tutioorin, the proportion is less than assigned by theory.

The proportions of the moon's perturbation tides (λ, ν, μ) agree well with the theoretical proportions.

The luni solar declinational semi-diuranl tide is less in proportion to the main tide than has been found for any port in India, and is considerably less than the theoretical proportion, viz. 0.084 to 0.127 .

With regard to the diurnal tides, the proportion of R, of K is exceedingly high, and approaches closely to what was found at Aden, being 84 per cent of the main tide, which is about double the value at Bombay and Kurrachee.

The proportions of the other diurnal tides R_{1} of P, R_{1} of M, R_{1} of O, R_{1} of J, and R_{1} of \mathbf{Q} are all about 20 per cent (in their proportion to the main tide) greater than obtains at Kárwár, where the proportions again were all grenter than at Bombay and Kurrnchee.

Thus the whole of the diurnal tides, except R_{1} of S , are grenter in their proportion to the main tide, than they are at the Indian ports north of Beypore, and approach closely in their proportions to the Aden diurnal tides; but R_{1} of S , although agreeing well in its proportion to the Bombay value, is only about half what was found at Karwár and Aden.

The proportion between the solar and lunar diurnal declinational tides P and O is 0.496, which agrees well with the values at Bombay, Kurrachee, Kúrwár, and Aden, and is within the limite of the theoretical values.

The proportion between J and Q is more nearly accordant with the theoretical proportion than at Aden, but is still higher than the theoretical proportion.

The proportion of O to K is much the same as at Bombay, Kurrachee, Aden, and Karwár, and less than the theoretical minimum proportion.

With regard to the overtides of S , and M , there is nothing very remarkable, except that \mathbf{R}_{4} of \mathbf{M} is slightly greater in its proportion to the main tide than generally happens, being 0.023 .

With reference to the long period tides at Beypore, the lunar monthly tide benrs a much higher proportion to the main tide than is generally found in Indian ports; this is also true with regard to the lunar fortnightly and luni-solnr fortnightly tides, both of which are from three to four times as great in their proportion to the main tide as is usually found.

The solar annual tide also is very large at Beypore, being almost 35 per cent of the main tide, which is very much greater than the proportion at Aden, where it was found to be abnormally high.

The solnr semi-annual tide has also a large amplitude at Beypore, being almost double what it is at Karachi, and even greater than at Aden.

It may be remarked, with reference to the long period tides at Beypore and Aden being very large, and also the luni-solar diurnal tide (K) being very great in both places, that the latitude of the two ports is much the same, viz. 12° North.
'The complete separation of the main lunar and nanin solar semi-diurnal tides (M and S), together with their respective epochs, furnishes a rendy menns of finding the time of springtides, or the time at which the two tides are exactly the same in phase.

For instance, the main solar semi-diurnal tide at Beypore attnins its maximum when teice the menn sum's hour nugle from the meridian is $20^{\circ} \cdot 0$. Similarly, the main lunar semidiurnal tille attains its maximum when tuice the mean moon's hour anglo is $328^{\circ} 3$. Livading the difference between those two epochs by facice the differonce between their respectise daily motions, we obtain an interval at which the two tides are coincident after the time of new or full mon. The differenne letween tho two daily motions is $12^{\circ} 191$: the result for Beypore is $2 \cdot 12$ days, or about 2 ditys and 3 hours.

VALUES OF TIDAL. CONSTANTS FOR PADMBEN, 1878-79.
Lat. $9^{\circ} 16^{\prime}$ N., Long. $79^{\circ} 11^{\prime}$ E.
The following shows the amplitudes and opochs deduced from the 1878-79 observations at Paumben:-

Short period Tides.

Long period Tides.

Lunar	mont	tide	\cdots	...	$R=0.059$	$=349^{\circ} 0$
	fortnightly		...		$R=.056$	$\mathrm{c}=343^{\circ}{ }^{\circ} 4$
Luni.solar		"	...	\ldots	$R=016$	$\epsilon=175^{\circ} \cdot 4$
Solar annua		"	...	\ldots	$R=122$	$\epsilon=298^{\circ} \cdot 9$
Solar semi-	annual	"	...		$R=138$	$\epsilon=95^{\circ} 5$

The proportion between the two main tides (R_{2} of M and R_{2} of S) is 0.652 , which is very much greater than the theoretical proportion ($0 \cdot 476$), and is the only instance on record, except at Tuticorin, where such a high proportion obtains; at Tuticorin the main solar tide is actually 72 per cent of the main lunar tide.

In one instance only, of all the tidal observations hitherto analysed (viz. at Portland brenk-water), has the theoretical proportion been exceeded, and the proportious at Paumben and Tuticorin of the solar semi.diurnal tide must be looked upon as abnormally high.

The proportion of the smaller lunar elliptio semi-diurnal tide (L) to the main tide is slightly greater than theory would assign, while that of the greater co-effioient (N) of this tide is considorably less, proportions which are esaotly opposite to what obtains at all ports except Tuticorin.

The proportion of the moon's perturbation tide (λ) is high, while that of the other (ν) is low, and the proportion of the variational tide (μ) is also low.

The luni-solar dedinational semi-diurnal tide (K) is one-fifth of the main tide at Paumben, which is higher than is usually found, except at 'Iuticorin, where in fact the whole of the semi-diurnal tides ngree well in proportion with Paumben.

With regard to the diurnal tides, there is nothing very remarkable; K_{1} of K is perinaps slightly larger than obtains at most places, but is almost the same as was found at Kurrachee and is very nuch loss than obtaine nt Kírwár, Aden, and Begporo.
R_{1} of S is about donble in proportion to that at Bombay and Kurraohee, but agrees well with Thuticorin. \mathbf{R}_{1} of \mathbf{P}, nypronches closely in its proportion to the mean between Karwár and Beypore, but is nearly double of what was found at Tuticorin. R_{1} of O is much the samo in proportion ns found in Bombay, which is a good doal less than the proportion obtaining at Kurrachee and Kírwír.
$\mathrm{R}_{\text {, of }}$ of agroes fairly well with Bombny and Kurrachee in its proportion.
The proportion betweou P , and O , solar and lunar declinational tides, is very much greater than hns been found at any other place : the maximum proportion according to theory is 0.574 , while at Paumben it has been found to be 0.832 .

The proportion of J to Q has generally been found to be greater than theory would assign, but at Paumben it is actually less, and only at one other port (Tuticorin) has this been found to be the case.

The proportion of O to K is also lower than is generally found.
With regard to the overtides, the only ones of importance appear to be R_{3} and R_{4} of M, which are respectively 0.028 and 0.033 of the main tide, proportions higher than are usually found

The long period tides at Paumben give proportions to the main tide higher than are usually found, except for the solnr annual, which, although three times as great as at Bombey and Kurrachee, is only half of what obtains at Beypore, and Vizagapatam. But for the solar semi-annual tide the proportion is the largest yet obtained, being 24 per cent of the main tide, and this would point to its being a meteorological tide, due almost entirely to wind, having one maximum in the north-east nod one in the south-west monsoon.

It has been often noticed at Paumben that the tidal ourrent through the pass seems to flow entirely in one direction for six months in the year, and in the opposite direction for the other six months : the epoch of this tide occurs about the 6th May and 6th November. The epooh of the solar annual tide at Paumben ocours about the 14th January, whioh is about the middle of the north-east monsoons.

VALUES OF THE TIDAL CONSTANTS FOR VIZAGAPATAM, 18i9-80.

Lat. $17^{\circ} 41^{\prime}$ N., Long. $83^{\circ} 17^{\prime} \mathrm{E}$.

The value of the mean level of the sea from the year's observations was found to be 4.991 feet above the zero of the gauge, or 13.968 below bench mark C .

The following shows the amplitudes and epochs deduced from the 1879-80 observations at Vizagapatam:-

Short period Tides.

Long period Tides.

Lunar	monthly	tido	\ldots		$R=0.021$	$\epsilon=22^{\circ} \cdot 5$
	fortnightly	"	...	\cdots	$R=0.036$	$\varepsilon=3^{\circ} 1$
Luni-solar		"	$R=0.075$	$\epsilon=24^{\circ} \cdot 2$
Solar	annual	"	...		$R=0.740$	$\epsilon=190^{\circ} 1$
, semi-	annual	"	...		$R=0.301$	$\epsilon=88^{\circ} \cdot 6$

The proportion between the two main tides (R_{2} of M and R_{2} of S) agrees fairly well with the theoretical value. Tho proportions between the two lunar elliptio tides, although agreeing well inter se, ne aljghtly larger than the theoretical proportion.

The moon's perturbation tides (λ nad ν) are ench double the theoretical proportion, but for μ the proportion is alightly less.

The luni-eolar declinational semi-diurnal tido (K) agrees well in its proportion with the theoretical value; this has usually been found to be the case at other ports.

One of the main fotutures of the tides at Dizagapatam is, that the diumal tides are very small in proportion to the main lunar tide, being almost in every case about one-half what obtains at Kurrachee and Bombay.

The smallness of the main diurnal tide (R_{1} of K) is remarkable, being only 26 per cent of the main tide, which is the lenst proportion yet obtained in India, with the exception of Hanstal at the head of the Gulf of Cutch.

Vizagapatam being the first station in the Bay of Bengal where observations have been deduced, it would be interesting hereafter to see if this feature, viz. the smallness of the diurnal tides, obtains at other ports in the Bay.

The proportion between P and O is much larger than the thenretioal maximum proportion, and in this it approaches more nearly to what was found at Paumben than at any other port.

The proportion between J and Q is most remarkable. Theory would assign a value of about $0 \cdot 4$, that is to say, Q would be about two and a half times as great as J; but at Vizagapatam J is actually about three and a half times greater than Q.

The proportion between O and K is n little less than was found at other places.
The overtides of S and M are all small, and call for no special mention. But the most remarkable feature of the Vizayapatam tides is the exceedingly high proportion of the solar annual tide, which is almost half the magnitude of the main lunar tide: this is about double what was found at Adon, where it was first noticed to be ubnormally high. The solar semiannual tide also is very large, although not quite so great as at Paumben.

The epoch of the solar annual tide ocours about the end of September; the epoch for the semi-annual tide occurs about the beginning of May, and beginning of November, dates which agree well with what was found at Paumben; which is still further evidence of this tide being mainly due to wind.

GEOGRAPHICAL COMPILING AND DRAWING BRANOH, SURVEYOR-GENERAL'S office, calcotta.

Statement showin! the nature of the worl performed, and the progress made, from 1st October.

 1879 to $30 t h$ September 1880.

GEOGRAPHICAL COMPILING AND DRAWING BRANCH, SURVEYOR GENERAL'S office, calcdtta.

Sheets of the Atlas of India, 1 inch $=4$ miles.

12. S.E.	Part of Kattywar	Further additions drawn with hills, to complete sheet on the west.
$\begin{aligned} & \text { 18, N.W. } \\ & \text { S.E. } \end{aligned}$	\} Parts of Buhawalpur and Bickauecr Native State.	Additions on north-west corner drawn to complete. Additions drawn in outline to extent of survey.
31, N.W. ${ }^{\text {a }}$	Parts of Montgomery, Feroz	
S.W.*	¢ pore, Sirsa, and Hissar dis-	\} Buhamalpar portion drawn complete; additious from
$\begin{aligned} & \text { N.E. } \\ & \text { S.E. } \end{aligned}$	$\int \begin{aligned} & \text { tricts, and Patinla, Hahawal- } \\ & \text { pur and Bicknaeer. }\end{aligned}$	reetit surveys in progress.
$\begin{aligned} & \text { B2, N.E. } \\ & \text { S.E. } \end{aligned}$	$\} \begin{aligned} & \text { Parts of Bicknuecr, Shaik- } \\ & \text { arrati, and Hissar. }\end{aligned}$	\} Additions drawz on west to complete.
:33, N.W.	$\} \begin{gathered}\text { Parts of Jodhpore and Bicka- } \\ \text { neer. }\end{gathered}$	\} Further additions drawn on west to complete.
35, N.W.	Part of Oodeypore	Additions on west drawn in outline to complete.
N.W.	Parts	Drakn in outline to extent of survey.
N.E.	$\} \begin{aligned} & \text { Parts of Guzerat } \\ & \text { India Agency. }\end{aligned}$	\} Additions drawn in outline to extent of survey.
37 N.E	Parts	Additions drawn complete with hills.
38, N.W.*	Parts of Nasit and Ahmed-	
$\begin{aligned} & \text { N.E. } \\ & \text { SFE } \end{aligned}$	$\}$ nagar districts and Hydera.	$\}$ Drawing in outline in progress.
48, N.E.	Parts of Bijuor, Dehra Dun, \&c.	Drasring in outline in progress.
53, S.W.	Part of Central India Agency	Further additions drama complet
60, N.E.*	Part of Mysore	Drawing in outline in progress.
$\begin{aligned} & \text { 66, N.E. } \\ & \text { S.W. } \\ & \text { S.E. } \end{aligned}$	$\left\{\begin{array}{l} \text { Parts of Bijnor, Kumaun and } \\ \text { Garlwal. } \end{array}\right.$	Hilla dramn complete with additional outline and names.
$\begin{gathered} \text { 67, N.W.* } \\ \text { N.E:* } \\ \text { S.W.* } \\ \text { S.E.* } \end{gathered}$	$\left\{\begin{array}{l} \text { Parts of Tarai, Kumaun, Mora- } \\ \text { dabad, Budauu, and Bareilly } \\ \text { diṣtriets. } \end{array}\right.$	Drawing in outline completed of 67 S . E. and drawing of the other three quarters in progress.
69, S.E.	Parts of Hamirpur und Bauda districts.	Drawing in outline of additions on north to complete. In progress.
118, F. P.	Parts of Jnlpaiguri, Coocb Behar, Hhutun, \&c.	Revision of south-enstern portion of sheet (Goalpara) completed in outline from recent survey.
119, F. P.	Parts of Rungpore, Maldah, Dinngepore, Mymensingl, \&c.	Revision of Goolpara district, on the north-enst of sheet, completed with Hills.

- The 13 quarters marked ${ }^{*}$ are new sheets.

Standard Sheets of the Topographical Surcey drawn for reproduction. Scale.

Ganjam and Orissa Survey.
In. Miles.

	$1=2$	Fair drawn complete with hills from the original field sheets.
Hyderabad Survey in 18 sheets.		
Sheets 1, 2, 3, 4, 6, 7, 11, 12, 14, 16, 17, 18.	$1=1$	Fair drawn complete with hills from the original field sheets.
Shects 5, 8, $\frac{\theta \text { and } 10}{\text { in olle }}, 13,16 \quad \cdots$	$1=1$	Fair drawn in outline from the original field sheets. Hills in progress.
Central Provinces Survey,		
Sheets 14, 15, and 9	$1=1$	Fair drawn complete with hills from the original field shects.
Khasi, Garo, and Naga Hills Survey.		
Sheets 13, 23, 27, and 28, originals	$1=2$	Unsurveyed blanks in the origiun sheets filled in from recent surveys, for a 2nd edition.
Simiz and Kalla Road Survey.		
Sheret 5 D.	$6=1$	Fair drann from the original field sheet.
Thal Chotiali Route Survey.		
sheret 1	$1=4$	Compiled and drama complete with hills froun the origimal field sheets.

GEOGRAPHICAL COMPILING AND DRAWING BRANOH, SUHVEYOR-GENERAL'S OFFICE, CALCDTTA.

Miscellancous Mans, Tracings, \&c.
scalb,
Soolny Pagoda and town of Rangoon.
Zaimukit valley nad country adjoining British territory.
Gunja Tract
Murree and Knhuta Talhsils
Mullah's Explorations in 1878
Conntry between Pishin and Shorawnk.
Tringgulation Clart, Kandahar, minor series, 1879.
Route of mission from Kandahar to Herat in June and July 1839.
Country between Karez-i-ata and Panjwai, Sonthern Afghanistan.
Ronte Survey in 4 sections from Madndalari station to Lehri, by Cnptain Bearan.
Jellhlabod district, Afghanistan, with the Kunar and Laghmnn valleys, showing tribal divisions.
Boundary betmecn district Bahraich of Oudh, and Nepal, along the Rapti river, from pillar 13 to pillar 20.
Reconnaisance Survey, part of N. E. Beluchistan, by Captain Maitlnnd.
India, Frontier Trade Map

progress report of the engraving branch from the ist october 187θ TO THE sori sertember 1880.

General Maps, 乌e.

Title of map.	Outine and writing.	Hilla and and hille.	Remarks showing progress.
	Sq. In.	Sq. In.	
Sheet 1 ...	61 W.	\ldots	Additional outline and writing completed.
$\text { " } 3 \quad \ldots \quad . .$	275 O. W.	Heary additions and corrections to outline and writing nearly done.
, 4 ...	146 W.	\ldots	Corrections and heary additions to writing, in progress.
Map of Indin in 4 sheets, scale 64 miles $=1$ inch.	378 W.	Corrections and heary additions to writing, completed to the four sheets.
Mnp of India, seale 96 miles $=$ 1 inch.	196 W.'	Alterations to suit authorized spelling of names. As far as drawing, completed. Plate pat domn.
Map of Bengal in 2 sheets, scale 16 miles $=1$ incl.	131 W.	. \cdot...	Corrections and henvy additions to writing nearly completed. In progress.
Map of Central lrovinees in 2 sheets, seale 16 miles $=$ 1 inch.	607 O. W.'	Outline completed. Writing more than half done. In progress.
Map of Rajputana in 2 sbeets, scule 16 miles $=1$ inch.	234 O. W.	Corrections to outlino done. Writing completed. Platos put down, waiting for fresla materials.
Map of Central India Agency in 2 sliects, scale 16 miles= 1 inch.	$3350 . \mathrm{W}$.	\cdots	Additional outline done. Writing nearly completed. In progress.
Map of Assam, scale 16 milos= 1 inch.	20 O. W.	Corrections of outline and additional writing completed.
Map of Himnlayn Routes, scale 16 miles $=1$ inch	206 W.		Writing well advanced. In progress.
Plan of Calcuta \quad-. $\quad .$.	\ldots	Corrections and alterations done.
Chart of Colombo Harbour (for the Marine Survey Department).	additioun cultirntion and jungle completed. Plate finished.
Chart of tho Indian Ocean ...	50 O.	Border projections and mingnetic varintion curres completed. Outline just commenced.
Scale plate, 5,280 feet to the inch.	Repaired and figures cut. Plate finished.
Senle clinometer			Engraved and finished.
Idiometer machino			Well advanced. In progress,
Scule vernier -..	Engraved nad finished
Imprint plates $\quad . .$.	Alteration of dates done.
Map hendings for Topographical Surveys.,	Repaired and Ginished.
Map heading, Hydcrabad To. pographical survey.'	Engraved, and transfer sent to press.

Indian Atlas Sheets (New) completed and published.

Notb.- 'He progress during the year is shown in square inches. A full sheet of the Athas contains $9: 7 \cdot 2$ square inclies; quarter plate 231.8 square inehes.

Atlins sheets-						
$18 \mathrm{~S} . \mathrm{W}$.	\cdots	\cdots			
18 N. W.	6 W.	80		
22 S. W.				
$37 \mathrm{~N} . \mathrm{E} . .$.	100 W .	120	,	Complete up to margins.
$53 \mathrm{~N} . \mathrm{W}$.	135	"	Complete up to margins.
$91 \mathrm{~N} . \mathrm{W}$.	...	\ldots		"	
$12 \mathrm{~N} . \mathrm{W} . .$. $92 \mathrm{~S} . \mathrm{W}$.	...	\cdots		"	
120 N. E. \ldots	\ldots	\cdots	12	"'	$\{$
129 N. W. ..	\ldots	\cdots	8 W.	49	"	
129 H. W.	\cdots		"',	Completed up to limits of surfey.
$130 \mathrm{~N} . \mathrm{E}$.	...	\ldots		96		

PROGRESS REPORT OF THE ENGRAVING BRANCH FROM THE $18 t$ OCTOBER 1879

 TO THE 30TH SEPTEMBER 1880.Indian Atlas Shebts (Neec) in progress.

Additions and Corrections to Indian Atlas Shects.

progress report of the engraving branch fnom the lat october 187θ TO THE 30te SEPTEMBER 1880.

Additions and Corrections to Indian Atlas Sheets-concluded.

Repairing of old Full Indian Atlas sheets.

38	..'	**	...	'.'.'.	106 hills.		Repairing hills almost $\frac{\&}{3}$ done. In progress.
41	..'	...	\ldots	302	"	Henyy sheet. Kepniring hills completed.
49	12	"	Small portion of hills repaired. Completed.
55	-	\cdots	. ${ }^{\prime}$			"	Heavy sheet. Repairing hills completed.
73	300 W.	\ldots		Writing repaired. Completed.
106	292	"	Heary sheet. Repairing hills $\frac{3}{4}$ done. In progress.
115	\cdots	\ldots	\cdots		"	Heary sheet. Repairing hills completed.
116			,	Hills repaired. Completed.
120	431 W.		Heavy slacet of writing recut. Nearly completed.
	-			731	1,336		Total square inches of repairs.

Miscellaneous work, viz. notes and references on plates, borders, \&c.					
Plates.-Outside names and figures completed; $37 \mathrm{~N} . \mathrm{W}$; all four quarters of 48 , 67 N.E., 67 N.W., 67 S.W.					
Ditto.-Slight corrections and additionshave been made to atlns sleets 51 S.E., 51 S.W., 51 N.E., 86 S.W., 87 N W., 90 S.W., 124, S.W., and 130 N.W.					
Ditto.-Outside names and figures in progress31 N.E., 31 S.W., three quarters of 134 and 135, all four quarters of 69,145 , and 146.					
Ditto.-Outside names and Ggures completed-all four quarters of 38,39 and 49. Number of platos in hand during the ycar, 145.					
Copper plato Printing.					
Proofs Tranefors Impressions					
					414
					4,375
Total ... 5,68					

C. W. COARD,

Superintendent, Engraving Branch.

Steel-facing completed.

The preparation for steel-facing copper plates was commenced on the 3rd December 1879. The first trial plato was steel-faced, and approved loy tho Surveyor-Generat on the 7th January 1880, from which date up to the 30th September 1980 the following atlas sheets and miscellaneous plates lanve been steel-faced. Indina atlas shects 29, 39, $41,42,47,60,68,60,61,62,63,73,74,75,79,102$, 114,3 N.E., 10 S.W., 18 S.W, 18 N.W., 22 S.W., 23
 70 S.W , 71 N.E., 90 N E., 90 S.E., 90 S.W., 91 N.W.', 91 S.W., 124 N.E., 130 N.E., 130 N.W., 130 S.W.' Colombo Harbour clart, large tint plate B, and one small scale of shade plate.

Full sheets steel-faced				17
Quarter ,	,	22
Miscellaneous	"	3
		Toral		42

JOHN• O. N. JAMES,
Assistant Surveyor-General.
Table A.
Talulated Statement of the principal Records prepared in the several Executire Offices of the Revenue Branch, for the year ending 30th September 1880.

[^40](b) Also 1 volume of reotanguler coo-ordinates.

Table B.

Statemnt of Work performed in the Drawing and Compiling Branch of the Depuly SurveyorGeneral's Office during the 9 months extending from 1st January to 30th September 1880.

Table B.-continued.

Titlib of Map.	Senle.	Rexames.
	Inch. Mile.	
Oudh (new edition) in 65 sheets, standerd eize, $30^{\prime} \times 15^{\prime}$ Bengal.	$1=1$	The original maps, with gratioule lines inserted, comprising sheets $100,120,129$, $130,144,146$ and 147 , sent to press for lithography. One sheet, No. 144, has been published.
Distriot Midnapore, in 18 sheets, standard size, $30^{\prime} \times 15^{\prime} \quad .$.	$1=1$	The $2^{\prime \prime}$ sheets $2,3,6,9,12,13,15,16$ and 18, drawn last year have been examined, corrected and oompleted for press; sheet No. 5 completed up to margin by addition from Bankoora district; sheets 1,4 , 7 and 10, drawn in Executive's office, have been examined and completed for press; $2^{\prime \prime}$ sheet 14 has been drawn. Portion of distriot Balasore is being added, whioh will oomplete 3 sheets up to margin. All but sheets 8, 11, 14 and 17 have been published.
Distriot Noakholly, in 12 sheets, standard size, $30^{\prime} \times 15^{\prime}$ Bombay.	$1=1$	Graticule inserted on original $1^{\prime \prime}$ maps, and skeleton standards $30^{\prime} \times 15^{\prime} \mathrm{pre}-$ pared for guidance of Litho. press. No proofs received to date.
Decean Topographioal Survey, $2^{\prime \prime}=1$ mile, betreen latitude 17° and $20^{\circ}-45^{\prime}$ including the Konken, in 96 sheets, standard size, $30^{\prime} \times 15^{\prime} \ldots$ Number of sheets published to date, 50.	$1=1$	Since the last report, $2^{\prime \prime}$ standard sheets Nos. 26, 27, 28, 32, 49 and 53, drawn in Exeoutives' offioes, have been examined and completed for publication and sent to press; of which sheets 49 and 53 have been published.
Index Mapg.		
Of districts Dera Ismail Khan and Bannu; Rawalpindi; Saharanpur; Muzaffarnegar ; Meerut; Ghazipur; Ballia; Banda; Mirzapur; Jaunpur; Cuttack and Pooree; Han. thawaddy; Bassein; Deccan and Konkan		Brought up to date and re-published to illustrate the Annual Report of 1879-80. The Bassein index was re-typed, and hill portion re-drawn in head office.
Miscellaneous Traces, \$sc.		
Traces of 9 atlas sheets of Ganges Deara Survey of 1865-66, showing in red the positions of village boundaries as surveyed in 1842 46	$4=1$	For Colleotor of Patna.
Traoes of 6 villages of distriot Patza	$4=1$	
Trace of Dalleseri River, 1858-63 (3 sections)	$4=1$	For Commr. Dacoa Div.
Traoes of 3 atles sheets of distriot Hooghly	$4=1$	For Govt. of Bengal.
Traces of 5 atlas sheets of distriot Pilibhit	$4=1$	For Colleotor.

Table B.-continued.

Table B.-concluded.

Titis of Map.	Scale.	hrimage.
Traeerse dala, ¢c., supplied.	Inch. Mile.	
Of districts Dacea nad Mymensingh along Dalesseri River	\ldots	For Commissioner, Dacoa Division.
Of Jumna and Ganges Rivera ...		" Do. do.
Of distriots Jaunpur and Oudh ...		„, Deputy Supdt., No. 6 Party.
Of Banghi Khell Hills Of distriots Azamgarh and Ghazi- \qquad		$\begin{aligned} & \text { Do. No. } 1= \\ & \text { Do. No. } 4 \end{aligned}$
Of Sind along the Runn of Cutch ...		", Surveyor-General.
Of distriot Budaun, desoription of bench-marks, Sections I to XX	, Irrigation Departmont, N..W. P.
Computations examined.	Senson.	
	$\begin{aligned} & 1871 \text { to } 77 \\ & 1875 \text { to } 78 \\ & 1877 \text { to } 79 \\ & 1871 \text { to } 74 \end{aligned}$	$\left\{\begin{array}{l} \text { Examination of a percentage has been } \\ \text { made in oeah district with the original } \\ \text { maps, and the defeots found have boen } \\ \text { communuicated to the Executive Off. } \\ \text { cors. } \end{array}\right.$
Miscellancous work.		
Detail statement of the publiontion of the 4 " maps of the N.-W. P., showing numbers, \&o., of original maps on record, \&o.	For N.-W. P. Government.
Revised area statements of Districts Muttra, Midnapore, Hooghly, and Jhung, according to revised limits	For record.
The correotion of maps ond reoords according to changes notified in Gazettes, ©c.	\ldots	For local governments, and office reoord.
Caloulation of co-ordinates for the projection of the $1^{\prime \prime}$ standards of districts Dera Ismail Khan and Bannu, Midnapore, Balasore, Noakholly, Backergunge, and Budaun	For use in preparation of maps for publication.
Defuty Surebyor-Generat's Office Calcut/a, the 1st October 1880.	$\left.{ }^{8 ;}\right\} \quad D e^{\prime}$	F. CODDINGTON, Major, puty Supcrintendent at Head-Quarters.

Table C.
State of Pubiication of Cadastral Maps up to the 30th September 1880.

(a)-Added owing to re-nrrangeruent of sheets,
(b) - lijures of lest return changed to ngree with final nublicntions.
(() -Incse figures are npprosinute and liabin to niteration. (e) -01 have been eent to press.
(f)-Publieation discontinued at request of Board of Revenue, pending final disposel of maps.
(a)-all ne press.

Detail of Examination in connection with Publication.

Province.	Nomder or Bribetb.					
	Exnmined and rendered suitable tor photozucography.	Traced and examitied for zincography.	Prool copies examined previous to press order.	Colored and subsequently oxamimod.	Prinled maps exnaitied and returaed.	Hemares.
North-Westorn IProvinces	2,970	87	1,010	1,800	819	Ecale 10 inches to
Britiah Durme	01	'**'	"''"	\ldots	Ditto.
Bengnl	654	17	1,010	000	\cdots	Scnle 32 inches to mile.
Total ..	2,085	104	2,020	2,490	819	

Drputy Surveyor-Genrral's Office;
Calculta, 1st October 1880.

F. CODDINGTON, Major, Deputy Superintendent at Head-Quarters.

STATEMENT OF WORK DONE BY THE LITHOGRAPHIC BRANCH, SORVEYOR-GENERAL'S OFFICR, BETWEEN THE lst OCTOBER 1879 AND 30tif SEPTEMBER 1880.

Work done for the Survey Department.

GTATEMENT OF WORK DONE BY THE LITHOGRAPHIC BRANCH, SURVEYOR-GENERAL'S OFFICE, BETWEEN THE 1gT OCTOBER 1879 AND 30TH BEPTEMBER 1880.

Work done for the Surrey Department.

Work done for other Depaviments.

STATEMLNT OF WORK DONE BY THE LITHOGRAPHIC BRANCH, SURVEYORGENERAL'S OFFICE, BETWEEN THE lst OCTOBLLR 1879 and soth SEPTEMBER 1880.

Statement of Type Work executed, cxclusice of ealue of Transfers, \&c., already ineluded in the cost of the several Lithographic Maps, \&c.

General abstract of out-turn and value of work performed.

Statement of Expenditure.

Katablighment ... Contingent charges		\ldots	\cdots		$\begin{aligned} & \ldots \\ & \ldots \end{aligned}$	$\begin{gathered} \ldots \\ \ldots \end{gathered}$	$\begin{gathered} \cdots \\ \cdots \end{gathered}$	$\begin{gathered} \ldots \\ \ldots \end{gathered}$					$\begin{array}{rrr} \text { Hя } & \text { \&. } & \text { P. } \\ 34,077 & 2 & 8 \\ 4976 & 9 & 1 \\ \hline 39,063 & 11 & 9 \end{array}$		

R. V. RIDDELL, Captain, f.E.,
Assistant Surveyor-General,
In charge Lithographic Branch, Surteyor General's Office.

Extract fiom a Report by Majon S. H. Cownn, s.c., Assistant Superintendent, Survey of India Officiating in charge of the Photographic Branch, Survcyor-Gcneral's Office-Season 1879-80.

I have the honour to submit the usual tabular statemente showing the nmount of work performed in this branch of your office during the past year, from lst October 1879 to 30th September 1880.

A comparison of the out-turn with that of the previous year is presented in the following table:-

	Oiminaty wonk.				Cadastal mapg.				
	1870-80.	1878-79.	Diflerenoe.	Difference ill водия Inches.	1879-80.	1878.70.	Digerence.	Differenco iti square inches.	Rbmabze.
Original sections	1,20日	1,222	+187	3,979	3,941	-208		
Nekntives... $\quad . . \quad . .$. No.	1,9:8	1,322	$+600$		2,846	3,401	- 516		
Ditto aquare inches ...	6,01,190	4,74, 322		+1,10,868	22,16.148	20,00, 4.32	-3.	-3,02,404	
Pholokraph tranyfor ... No.	1,933	1,180	+753		20, ${ }^{8.110}$	95, 3,154	-244		
Dilto squaro inohen ${ }^{\text {a }}$ -	5,05,970	4,51,017 ${ }^{102}$	\cdots	+1,04,95s	28,92,320	25,70,364	-1,0 4,044	
Silver prlnte No.		192 42,220	$+830$	',',	
	1,11,003	42,220	-216	+68,848	
	8,452	1,01,032	-216	-02,040	
Platinum prinis *... No.	- ${ }^{\text {c." }}$'.	.'.'	\cdots	
Ditto inclies $\quad . .$.		-1,004	$\cdots+849$.	3.6.01	4,162	$\cdots+01$...	
Tramafars to zino \quad...	1,25,150	1,12,014	+24, $+13,138$		1,18,681	1,03,120	+15,531	...'	
Ditto of printed *hoets,	2,56,070	1,41,912	+1,11,754	1,18,481	1,03,150	+18,631	
Ditto ditto ditto, combined.	2,40,300	1,20,30.	+1,13,075	0,4,031	60,115	+7,006	
Proofs	1,282	9,169	-1,877	3,022	7,528	-9,806	\ldots	

The increase in the ordinary work is due to the great demand for maps of Afghanistan.
The oadastral work has proceeded regularly throughout the fear, at a rate considerably below the full power of the establishment. The supply of originals in the Revenue Office ran low during the cold weather of $1879-80$, and the supply was only kept up by recoipts of maps survejed in the same sonson. But since June 1880, when the Board of Revenue, North-Western Provinces, directed that the system of congregating several small adjoining villnges in one sheet should be discontinued and each village published by itself as a separate map, the work of the zinoographers has been very heavy. For example, in one batch of eight sheets received from the Revenue Survey Office, there were 50 different villages. These were photographed on eight negatives, from which eight transfers were prepared and put down on zino. From each plate as many retransfers were pulled as there were villages in the sheet; from enoh retransfer all the villages but one were out out, and this one, with its proper title, ndjoining village names, and notes, was put down on a zinc plate by itself. Previous to the issue of this order, sheets containing congregated villages were printed as they stood, 25 copies being supplied for each village on the sheet.

The expenditure of tho office during the same period (Survey year, 1879.80) has been as follows:-

The total expenditure for the previous year, 1478-79, was Rs. 1,02,348-14-2.
The necessity, on financial grounds, for the separation of the oadastral expenditure on wages, chemicals, stores, and contingenoies from the corresponding expenditure on ordinary offioe work has long been a great inoonvenionce. If carried out strictly, it would
have prevented the transfer or lon of labour or materials from the officeside to the oadastral or vice versá, unless the smallest item could be brought to acoount, which was hardly practioable when the work of the two branches was going on side by side in the same rooms. And, further, no oharge was made agninst the cadastrul branob for su perintendence, honse-rent, and some other items, of all of whioh a large slare was fairly debitable to it. Until it could be authoritatively decided what this share should be, it was impossible to draw up a regular scale of charges for work done in the ordinary office branoh.

Your proposal to the Government of Indin, in Deoember 1879, to include the expenditure of the Cadastral Brauch in the Survey budget and recover from the different Provinoial Governments the value of the ondastral maps supplied to them at the fixed rate (for 1880.81) of Rs. 15 for 25 copies of ench photozincographed map and Rs. 10 for 25 copies

[^41] of each ziucographed map, has enabled this office to dispense with separate indents for the ohemicals and stores required for the two branches* and to use a fixed scale of charges for work done.

No ohanges have been made during the year in the processes regularly used, nor has any new process been introduced. The work of the office is, as before, almost oonfined to photozincography, the amount of silver prints, pigment prints, carbon prints, collotypes, and platinum prints being comparatively very small. A method of multiplying copies of oirculars, rough drawings, \&o., invented in Germany and extensively used in England (where it is known as the hektograph, multiscripts, \&o., \&o.), was tried and found to succeed here, and a quantity of the necessary materials for working it was made up and supplied to officers in Afghauistan.

Statement shoving the Value of the Work done for other Departmenta from 1st October 1879 to 30th September 1880.

namge of impabtameta.	$\begin{aligned} & \text { Numbler } \\ & \text { sectious. } \end{aligned}$	$\begin{gathered} \text { Number } \\ \text { negatives. } \end{gathered}$	$\left\|\begin{array}{c} \text { Number } \\ \text { of complete } \\ \text { copies. } \end{array}\right\|$	Number of silver nud outher prills.	Cost.	gemanta.
					Res. A. P.	
Government of India, Foreign Department.	6	5	1,500 !	113110	
Goverament of India, Military Department.	39	36	1,742	$58010 \quad 9$	
Goverdment of Puajab, Public Works Department.	2	11	390	31063	
Government of Bengal ${ }^{\text {a }}$,	2	2	550	\ldots	$98 \quad 26$	
Inspector-General of Military Works	59	131	11,70.7	4,09416	
Quartermaster-Genernl $\quad .$.	127	116	8,751	2,950 $15 \quad 3$	
Diractor of Garrison Instruction	2	2	250	76120	
Inepector-General of Ordamec ...	22	5	22,500	$63510 \quad 0$	
Marine Survey Department -..	20	47	7,810	\ldots	2,363 $15 \quad 8$	
Port Ollice ...	12	26	1,021	'.....	$90610 \quad 3$	
Geological Survey of India	1	1	617		49136	
Director-General of Railways ...	1	3	475	151149	
Mannger, Rajputana State Railwny...	5	1	500	\ldots	$\begin{array}{lll}134 & 2 & 6\end{array}$	
Engineer in Chicf, Westorn State Kailway.	11	11	900	\ldots	26700	
Executive Engincer, Public Works Department, N. N. State Railway.	12	10	3,600	\ldots	30600	
Executive Enginecr, Architect and Buildiug Department of Pablic Works.	9	19	390	72115	
Superintending Engineer, West Jumna Cnnal.	33	33	495	1,08670	
Superintending Engineer, West Sone Cirele.	1	4	110	$90 \quad 0 \quad 0$	
Chief Jingineer, Fonst Indinu IRailway	1	1	200	60.00	
Superiutendent, Carringe and Wagon Department, East Indian Hailway.	1	4	50	$69 \quad 20$	
Executire Engineer, Benares Division	5	4	500	$\begin{array}{llll}715 & 4 & 7\end{array}$	
Ditto, Calcutta Municipality.	17	11	1,050	...'	26300	
United Service Institution $\quad .$.	13	14	12,610	\ldots	1,040 14, 9	
Asiatic Society	3	$\stackrel{3}{4}$	(6,000	23730	
Deputy Commissioner, Auraoli, Bernr	1	4	20	10500	
Private Secretary to His Honor the Governor of Bombay.	1	1	100	\ldots	32120	
Sir Hobert Snndeman, r.e.e.r. ...		\ldots	18		31110	
Captain 1l. Deavan ${ }^{\text {a }}$. ${ }^{\text {a }}$.			10	500	
Assistnnt Engincer, Beluchistan ...			2	\ldots	100	
F. S. Grouse, Esq., OGiciating Deputy Magistrate and Collector.	13	2	3,900	.	56159	
E. C. Duck, Esq. $\quad .$.				700	24800	Silver athl plati-
Superintendent, Government Printing	39	8	106,926	1,404 12 10	1umb.
	2	6	150	\ldots	14000	
Principal Gomason College ...	3	${ }^{1}$	500 200		36 10 $\mathbf{6}$ 65 10 6	
Meteorological Reporter to Government.	1	1	200 460	$\begin{array}{rrrr}55 & 12 & 6 \\ 43 & 4 & 9\end{array}$	
Irrigation Department, Public Works Department, Punjab.	12	24	2,760	\ldots	1,388 $\quad 006$	
Forest Department	39	39	558		$96010 \quad 3$	
Colonel Tanner				26	5200	Silver.
Total	516	691	109,430	726	21,266 8 -	
Cadnstral, North. Western Provinces (Photozincographs).	2.160	2,160	58,616	\ldots	37,126 14 0	
Cadnstral, North-Westeru Provinees (Zineographs).	307	Nil	9,369	\cdots	3,476 12 0	
Cadnstral, Burma (Specimen Photozincograph).	1	1	120'	$2 \begin{array}{lll}13 & 0\end{array}$	
Cadastral, Bengnal (Photozincographs) " (Z (Zincographa) ...	041 74	Nil	40,463 3,139	15,761 857 8572 12	
Total Cadastral	3,642	3,102	1,11,707		53,250 150	
Grand Total	4,058	3,693	3,11,137	726	74,517 7 7 4	

S. H. COWAN, Major, s.c.,

Extract from the Narvative Report of J. B. N. Hennessy, Esq., m.a., Deputy Superintendent, First Grade, in charge Head.quarters Office, Trigonometrical Brauch, Dehra Dun, for 1879-80.

Computing Branch.

The following cost-table of work done in the Computing Branoh is similar to the Calculating Branch. corresponding tables exhibited in the reports for previous years:-

Cost-table in Rupecs, 1879-80.

Clasess 2 and 5 are intimately connected, and are best considered in combination. They indicate a percentage of 36 ogainst $32 \frac{1}{2}$ of last jear-an incrense due chiefly to the wants of officers who, having returned from the froutier, needed help in getting through the calculations of their field results. Otherwise, the average percentages above shown are nearly as usual.

The particulars of the work, indicated in a general manner in the preceding table, are given bereafter in such detail as seems desirable.
Calculatiug branch.
Class 1, Records, Library.-The work under this head shows a small deorease in the averuge per cent as oompared with former years.

Class 2, Computations.-
Principal Triangulation (in duplicate).
Sodtheen Tbigon.-Reduction of quadrilateral figures, computed $\mathbf{2}$

Ditto	simple polygonal figures, computed	\cdots	\ldots	$\mathbf{6}$
Ditto	compound figures, computed	\ldots	\cdots	4

Spherical excesses, computed 35
Principal triangles, corrected 35
Latitudes, longitudes, and azimuths computed (single deductions) ... 28

Secondary Triangulation (in duplicate).

N. W. Qoadrilatbral and N. E. Quadhilatrial. IChiefly Kumaun and Garhwal,	「Traverses, computed		25
	Trinngles, ditto or adjusted	...	560
	Ditto, feet and miles only, computed		0
	Latitades, longitudes and azimuths, computed corrected	or	
	Auxiliary azimaths, computed		175

Brluchietan Taianoulamon.-Triangles, computed 300
Ditto, feet and miles only, compated
Latitudes, longitades, and azimutiog computed

Notr-This kept a pair eights, computed
eights, computed
abot prearing spnopsis of resulta, abstracting angles,
and vortical, \&e., $\&$.) whole months.

Obsbryed Latitunes.-Reduced North Polar distances of 140 stars from six different catalogues to epoch 1850. Computed results of fourth and fifth visits to Kalianpur, giving values of the latitude of that station by 40 and 30 pairs (respectively) of North and South stars. Computed latitude of Dodagunta from observations by Colonel Lambton, 9 values by North stars and 7 values by South stars.
The work performed under this class cannot be tabulated further. It may, however, be added that a few sets of time, latitude, aud barometric observations were reduced for officers returned from Afghanistan. Some Actinometric observations taken at head-quarters were reduced. Two new auxiliary tables were computed, xxxiii of 35 pages (mile equivalents in feet and links for $\cdot 001$ to 10 miles), and xxxiv for finding the subtended angle from an observed vertical to a point not visited. 'lables were also computed for inoorporation in the volume of electro-longitude worls, \&c., \&c., \&c.

Cluss 4, Supply.-Data in manuscript has been súpplied to 20 offcers. In a few instances this involved considerable time in preparation. Over 800 despatohes of forms, maps, olarts, books, \&o., have been made.

Class 5, Press Copy -
N. W. Quadrilateral-Synoptical Volume VII.-Prepared tables of errata, addenda, references and contente.
Joderore Series.-Compared data for plates; tables illustrative of final reduction ; in hand, secondary triangles (so far as computed).
Eastern Sind Series.-Prepared (in part) descriptions of stationa, abstraot of angles, sums of squares and reductions of figures.
S. E. Quadrifateral, Volume VI.-Prepared some tables whioh were wanting to complete the set required for illustration of account of final reduction, vooaSynapticel Vol. x. bulary of native terms, coutents and errata et Ditto "xili. addenda.
Prepared addendum to descriptions of principal stations; also put together Vizagapatam tidal observations for incorporation in Introduction of volume xiii.
Synoptical Volume XII-Introduction written.
N. E. Quadmilatrial, Folumes VII and VIII.-Prepared (in part) table of contents; introluction, including account of final grinding, partly done; Introductory accounts of triangulation on Budhon, Kangir, and Amúa series, ebout three-fourths done; also
Eabt Calcutta Longitudinal Series.-Azimuth and co-ordinate lists prepared.
Absam Longitudinal Serieg.-Azimuth and co-ordinate lists compared.
Eabtern Frontirr Serieg, Galcutia Meridional Semies.-Co-ordinate lists examined and corrected.
North Pahasnath Series; North Malungha Series; Karata Serieg.-Exemined generally and re-arranged the co-ordinate lists.
S. W. Quadrilateral.-Desoription of principal stations, Singi series, compiled, and those of all the series of this quadrilateral compared. Reduotion of figures fiuished for about the fourth of the quadrilateral which remained undone at time of last report.
Southern Trigon.-Reduction of figures compiled for great are, sections 8 to 12 ; Bombay, longitudinal; Mangalore, meridional; Madras, longitudinal; South Konkan, Ramnad, longitudinal; and Madras coast series (needs comparison). Abstract of observed angles, sums of squares table, and table showing E. M. S. of observation and graduation prepared for the entire trigon. The two latter subjects need comparison.
Ofernved Latitudes.- Completed collection and tabulation as below :-
(1) - Lists of stations arranged alphabetically, olronologically, and lntitudinally.
(2) - A preliminary station table, giving name of station, series, latitude, longitude, observer, instrument, date, number of stars observed north and south, number of observations (in general) to eaoh star, and total number of observations.
(3) -Lists of stars observed at each of the 104 stations, furnishing 117 distinct sets of observation.
(4)-List of all stars arranged according to right nscensions in six sub-lists, corresponding to as many catalogues and periods.
(5)-A general compilation of all the 906 stars observed, showing the several catalogues in which they are or are not forthcoming, number of determining mensures, and other parts necessary for further progress.
(6)-A general list of all stars arranged according to right ascensions, showing the several stations at which they have been observed, \&o., \&o.
(7)-A similar list, with argument, North Polar distance, and furnishing in addition the years in which each star was observed, \&o., \&o.
Electro-Longitude Volune- - Seventoen forms for publication of results prepared after disoussion, nccording to iustructions received from Lieutenant-Colonel Caimpbell; some transcription done; and all press oopies sent in by Colonel Campbell examined generally before sending to the printer.

Miccbleanzoos.-Spirit leveled heights No. 1, Bombay Presidency.-Tables of oontents and errata prepared (the latter is being extended). No. 2, Bombay Presidenoy.-Manuscript examined generally, and tables of contents and errata prepared Letter press compiled for preliminary ohart of the lieluclistan series. Also letter press examined for preliminary chart of Kelat series, Enstern Frontier series (1877-78), and Burma seoondary triangulation (1878-79). Several pages of observed angles have been abstracted for the Eastern Frontier eeries, south of 23°.
Class 6, Press Prooff.-This olass is not susceptible of explanatory remarks. It has cost during this yoar rather less than the average percentage as compared with that of former years.

Class 7, Charts.-Examined or compared-

Final ...	$\left\{\begin{array}{l} \text { Reduction chart. of the N. E. quadriiateral. } \\ \text { Budhon meritional series. } \\ \text { Rnngir ditto ditto. } \\ \text { Karara. } \\ \text { Chendwar. } \end{array}\right.$
Preliminary	$\begin{aligned} & \left\{\begin{array}{l} \text { Kelat series, season 1870-80. } \\ \text { Eastern Frontiper series, season } 1877.78 . \\ \text { Madras Coast series, season } 1878.79 . \end{array}\right. \\ & \text { Index chart of secondary triangulation in British Burma (for oflice use) } \\ & \text { Rough chart of southern trigon (for olfice use). } \end{aligned}$

In addition, examined plates showing the figuros of the Brahmaputra series (for illustrating professional volume of N. E. quadrilateral), Ekeleton ohart of principal triangulation (for illustrating professional volume vi); also examined generally, chart illustrating pamphlet of spirit levels No. 2, Bombay Presidency.

Class 8, Stations.-Of additional duplicate lists one has been completed, making a total of 337 distriots accounting for 3.197 stations, and four supplementary lists desoriptive of 24 stations have been issued to distriot officials.

Class 10, Misreflaneons.-Cause of disorepancy between values of spirit-leveled points about Hubli, as obtnined by operations southwnrds from Bombay, nad northwards from Bangelore, examined into and reported on. Pages of several hundred pamphlets of spirit levels arranged preparatory to stitching. Distribution list for synoptioal volumes carefully prepared. Adie's new standard barometer compared and exnmined, with the object of eliciting the oauses of large fluctuations in the corrections due thereto, ospecially between morning nud evening observations. New range (1 to 500 yards) for the Mussoorie Volunteer Rifles, mensured. Quarterly list of maps and oharte published at Delira furnished to SurveyorGeneral's Office at Calouttn ; and three sets of pages printed at Dehra regularly forwarded to the same office for safe custody. Help afforded to various officers going to, or returning from, the Frontier. 49 sets of time observations to the sun, taken and reduced. Meteorologiral observations taken at Dehra twice daily on every day of the year, and at Mussoorie for six months; the resulte for Dehra supplied to the Meteorological Reporter to the Government, North Weatern Provinoes, and dnily weather telegrams for Mussoorie ns well as the anemograms for b th Debra and Mussoorie supplied to the Meteorological Reporter to the Government of Indin.

Tytographic Brancr.

The work annually performed by this branch during the past five years is briefly given in the following table, where the unit (a page of foolscap) is the same throughout.

Peges composed	\cdots	\ldots	\cdots	1873.70.	1870-7\%.	1877-79.	1878-79.	1878-80.
				1,179*	1,535	2,050	1,844	1.121
,. printed	349,000	495,573	630,80.4	590,013	491,136

- Averages for atwelve-month

An nnalysis of the pages composed, furnishos the following-

Photo-sincographing Branch.

The following are details of the work eseouted by this Branch :-
MAPS.

MAPS-continued.

Besides the foregoing, 588 blue prints, and 1,021 silver prints (433 subjects) were prepared for the use of the Engravers and for Executive Officers.

CHARTS.

Sonjber.	When published.			No. of perts.	No. of copies printed.
Gors Meridional series Final	Dec. 1	1879		1	375
Eastern Frontier series, scason 1877-78 ... Preliminary	Jun. 1	1880	...	1	67
Thyetmyo via Prome, \&c., to Cape Negrais (second- ary) season 1878.79				1	61
Trans-Indus Triangulation (portion of) by Lieutenant J. T. Walker, e.e. ... Rough				1	22
North Maluncha Meridional series Final	Feb.	,		1	370
Amúa Meridional series	"	"	...	1	34.5
Madras Const series, zeason 1878-79 Preliminary	,	,"		1	65
Komann and Garhwal Triangulation, 1864.78 ... Rough	"'	,		2	69
Ditto ditto, 1871-72",	March	,	.	1	33
Budhon Meridional series Final		"		1	340
Triangulation in Northern Afghanistan $\quad \cdots \quad$ Rough	May	',	...	1	55
Chart illustrating Pamphlet of Spirit-leveled Heights, No. 2, Bombay Presidency	June			1	605
Chart showing Chains of Principal Triangulation west of $92^{\circ} \ldots$				1	332
Reduction chart of the South Maluncha Meridional series, Final	July	"		1	381
Dito ditto Pérísnath ditto ,		"		1	417
Rangir Meridional series	August	"		1	384
Total		\ldots		17	3,921

DIAGRAMS.

Sods

The total number of negatives taken is 909 , the number of ohromo-osrbon prints, 1,070, and the number of transfers to zinc, 196.

Contrasting the work performed since 1875-76 we have :- -

Yeat.				Maps,	Blue-prints.	Silver-prints.	Cbarts.	Diagrams.	Porms, de.
1875-76	\cdots	\ldots	\ldots	14,025	12	126	1,678	9,729	18,314
1876-77	...	\ldots	.	12,349	108	189	9,225	3,958	21,384
1877-78	12,481	195	426	4,531	4,877	23,736
1878.79	20,229	1,394,	353	2,642	2,603	20,070
1879-80	\cdots	15,100	588	1,021	3,821	2,271	17,909

An abstract of the work executed during the past five jears stands thus :-

Eudject.			Numbia of Pbinta.				
			1875.70.	1870-77.	1877-78.	1878.70.	1870-80.
Mape, charta, and diagrams	\cdots		25,425	25,529	21,889	25,474	21,192
Blue-prints	- ...	12	108	195	1,394	588
Silver-prints	126	189	426	353	1,021
Forms, \&c. ...	'.'	*.	18,314	21,384	23,736	20,070	17,909

The deorease in the total number of maps, as compared with the total for the previous year, is due to the ciroumstance that the latter total inoluded no less than 8,568 copies of Afghanistan ma Turkestan maps, while in 1879-80 the number of oopies of these maps printed, was below 500 .

Drawing Branch.

16. The work performed in this Branol is as follows:-

Dreoripition of Work.	No. of Sinete or Diagame.		Scale one inch $=$ miles.	Rrmanis.
	Finisted.	In hand.		
Final Charta.				
Mangir Meridional series	1	...	4	$)$
	1	...	4	
	1	\cdots	4	
Huriláong ditto		\cdots	4	
Chendwar ditto	1	4	
Calcutta ditlo \ldots	1	\ldots	4	For redaction by
Heduction chart of the South Párasnáth series	1'	4	photo-zincography.
Ditto of the South Mnlinchan acries	1	硣	4	
Ditto of the North- Enst Quadrilateral ...	1	16	
Ditto of t'se Jodhpur Meridionnl serjes	1	4	
Skeleton chart of principal chnins of trinugulations west of Meridian of $\mathbf{9 2}$	1		
Pbeliminary Numerioal Ciamts				
Beluchistan series, senson 1877-79		1	4) For repradaction on
Relat ditto $\mathbf{1 8 7 9 . 8 0}$ Kandahar ditto $\mathbf{1 8 7 8 . 7 9}$	1	\ldots	4	fr full scale by photo-
Compilation.				
Spirit-leveled heiglite, sleets 75, 80, and 82 Parts of Arnbin and l'ersin for Colonel E. C Rose, Politicnil Rosident, Persian Gulf, in extonsion of his map Map of the Kuram and Kloat Vallors surveyed in 1879 by Mnior Woodthorpe, res., and Caphin Martin, e.o.	\cdots	3 \ldots	2)
		\ldots	12	
Preliminary mops of parts of Afghanistan, shecta 1, 2, and 3, for Captuin C. Strahan, \&fe.	1			For photo zincograplig.
Proliminary map of part of Argbanistan for Captain C. Stralian, \&c. Sketch Map of territory between Kabul nand the Mustagh Pase, for Major Biddulph Langaago Map of countries between Knbal and Lebb, for ditto. Turkestan Map, sheeta Nos. 8 and 4 (5th edition)				
	1		16	J
	1'	16	
	2			

In addition to the foregoing, oonsiderable help was afforded to Captain Holdioh and Major Woodthorpe in shading the fair sheets of their surveys, and in sorting and despatching various maps (originals, printa, \&o.) that had nocumulated at Museorie from the colleotions brought in by Frontier Officers; besides other miscellaneous duties required chiefly in oonneotion with the war in Afghanistan.

Correspondence and Stores.

The year's correspondence is represented by about 1,300 letters and some 600 oflloe Memos. \&o. The wants of Trane-frontier Officers were necesearily large. In all, of instruments 175 were despatehed, and 298 reoeived; of stores, 11 artioles despatched and 23 reoeived; presenting a total of 56 packages, and 47 parcels despatohed, and of 116 paokages and 198 parcele received.

Solar Photografhy.

As mentioned in last report the solar photography work was suddenly interrupted by the death of the photograpler, Mr. M. Meins. The work was resumed, under orders from the Seoretary of State, by Mr. L. H. Clarke, Surveyor, 2nd grade, after suffioient training,
on 17 th December 1879. The period under review comprises 289 days, of which the working facte will be found in the following table.

Total number of silver prints-1,3.40.
From above, and from facts of preceding reports, may be gathered-
With regard to bad weather, when the sun was invisible throughout the day, the percentages are-

1877-78 9 in 100 days, oltained from 273 days.				
1878-79 11	ditto	ditto	89	
1879-80 14	ditto	ditto	289	

The last is reckoned on the complete year of 365 days, because when the work was in abeyance in October and November bad weather very rarely occurs.

Again, as regards visible solar phenomena, we have-

from which the increase in so called "solar activity," as mensured by number of days, when features were visible, is obvious. In all, Mr. Clarke took 579 negatives including runs, and prepared 1,346 silver prints; the weekly despatoh of these to the India Office was made with the usual punctuality.

Mean Velocity in miles of the winds which blew at Dehra Dun during twelve months of 1879-80 for each hour of the day.

（ 83 ）
Monthly Meteorological results taken from the Register kept at the Head－quarter＇s Office，Trigonometrical Branch，Survey of India，Dehra Dun．

Yeai atd Monte．	bstolileter．						hygroneter．				fhermometer．								Rain．		Wisd．	ciotd．	
	At 9－90 A．M．								AT 3－30 P．\％\％		Dey Bols．				Wbi Buli．								
	$\begin{array}{r} \text { 高 } \\ \text { 道 } \end{array}$	$\begin{aligned} & \text { 綅 } \\ & \hline \end{aligned}$										$\begin{aligned} & \text { d } \\ & \text { d } \\ & 5 \\ & 5 \\ & E \end{aligned}$		$\begin{aligned} & \text { 台 } \\ & \text { E } \\ & \text { 邑 } \\ & \text { E } \end{aligned}$				$\begin{aligned} & \text { 若 } \\ & \text { 曾 } \\ & \text { 簏 } \end{aligned}$					
$\begin{array}{r} 1879 . \\ \text { October } \end{array}$	27.831	27.567	27697	27.735	27.468	22－608	61．5	$\cdot(80$	$63: 2$	－565	103.5	43.6	86.5	52.9	71.5	775	460	63.5	4	． 59	N．	1	2
November ．．．	－873	${ }^{6} 675$	－83	790	$\cdot 595$	702	$47 \cdot 4$	－699	479	－ 432	93.0	31.4	78.2	40.0	61.4	65.2	36.7	$52 \cdot 5$	．．．	．．．．．	S．W．	．．．	1
December	－904	$\cdot 681$	－797	804	－58．4	－710	41.1	618	41.2	－431	85.2	29.2	72．0	36.9	55.0	59.0	33.5	47.3	2	$\cdot 66$	s．s．w．	2	2
1880.																							
Janaay $\quad .$.	－928	－594	742	－948	527	$\cdot 664$	46.2	730	47.2	－493	90.5	31.5	76.1	$3 \mathrm{E}-2$	56.5	$70 \cdot 2$	36.7	503	3	1.67	S．S．W．	2	3
Febraary ．．．	$\cdot 852$	$\cdot 435$	713	763	455	＇640	47.7	743	48.8	$\cdot 565$	86.7	$\underline{290}$	75.5	350	56.9	62.4	$33 \cdot 9$	50.2	8	$3 \cdot 90$	S．S．W．	5	6
March	－821	472	－658	729	$\cdot 379$	－558	55.6	$\stackrel{5}{518}$	571	409	106．8	42.0	91.8	$48 \cdot 8$	714	743	44.9	600	\cdots	．．．．．．	S．S．W．	1	2
Δ pril $\quad .$.	707	-463	－582	－591	384	－483	55	＇396	514	$\cdot 266$	1154	51.9	98.2	$60 \cdot 2$	80.0	$75 \cdot 5$	$48 \cdot 8$	63.7	3	$\cdot 31$	S．W．	2	3
Mas ．．	$\cdot 643$	－405	510	\cdot^{517}	＇289	413	61.5	453	61.4	－407	118.7	561	101.0	60.8	817	81.0	54.4	67.4	8	$2 \cdot 17$	S．s．W．	2	5.
June	512	－218	362	－428	－134	－282	$70 \cdot 1$	＇597	$68 \cdot 1$	． 501	1217	62.7	$106 \cdot 4$	68.1	86.7	87.2	54.0	$73 \cdot 5$	12	$9 \cdot 10$	W．	5	6
July ．．．	$\cdot 494$	289	－397	－433	－238	－337	74.7	－862	$76 \cdot 3$	$\cdot 941$	109.6	68.0	90.0	70.5	79.1	81.4	665	746	26	33．34	S．E．	6	9
Angust ．．．	$\cdot 569$	$\cdot 371$	－452	470	－293	$\cdot 377$	736	$\cdot 778$	751	$\cdot 708$	$110 \cdot 8$	663	91.0	68.9	$80 \cdot 3$	80.6	$60 \cdot 5$	74．4	17	16.97	S．W．	5	6
September ．．．	$\cdot 763$	$\cdot 440$	－581	$\cdot 633$	$\cdot 350$	－494	70.7	775	71.9	＇727	$108 \cdot 3$	61.6	90.5	65.0	77.4	79－1	623	71.7	12	1344	N N．W．	4	${ }_{6}$

Ref．No．12216J－300－20 3．41．

Extract from the Proceedings of the Government of Imlit, Jome, Revenue and Agricultural Department (Surveys),-No. , dated Simla, the May 1881.

Read-
General Report on the Operations of the Survey of India during the year 1879-80, submitted with the Surveyor General's letter' No. 905, dated 2ul April 1881.

Resolution.-The third report of the amalgamated Department of the Survey of India deals, as usual, with the surveys in process of execution by the 'Hirgonometrical, Topographical, and Cadastral Survey parties, with geosraphical and miscellaneous operations, and with the work of the head-quarter offices at Calcutta and Dehra Dín.
2. The Surveyor Gencral reports that, in respect to Peninsular India, the principal triangulation of the whole country may now be regarded as fully completed. In Northern India the small chain of triangles which has yet to be executed will probally be finished within a few months. During the ycar three parties werc employed on principal and one on secondary triangulation. Colonel Branfill, whose skill and energy in the conduct of the modern operations in Southern India are commended in the Report, brought the work of the Madras const party to a close. Alter an interval of nearly a century, a regular series of triangles has thus been now laid down between Madras and Cape Comorin; and a branch series has been extended to connect the Survey of India with that of Ceylon. Colonel Branfill's party also executed some secondary triangulation, fixing the positions of the light-louses at Poudicherry and Negapatam, and linking a chain of triangles extending northwards to Ponani with one brought down from the Mangalore longitudinal series of 1873-74. In Jastern Sind, under the orders of Captain Rogers, an aren of 1,278 square miles was covered by principal triangulation; the chain of secondary triangles between Khelat and Quetta was finished; and a work of much immediate practical valuo, that of reducing the operations and preparing the charts of the triangulation between Jacobabad, Quetta, Khclat, Kandahar, and in the Khakez valley was earried on by Mr. Hennessey. The Eastern Frontier party was occupied in Siamcse territory in the neighbourhood of Bankok. Its progress was somewhat impeded by sickness and other difficulties; but Captain Hill cordially acknowledges the assistance which he received from the Siamese Government and the British Consul. To this party belonged the late Mr. H. Beverley, whose services had been assiduous and successful, and whose death, at a comparatively carly age, is much regretted. In British Burma an inconsiderable amount of secondary triangulation was effected around and to the north of Basscin. The triangulation between Rangoon and the main-land opposite the Krishna shoal was abandoned; and, instead of it, a traverse was executed forming one of the main circuits on which the cadastral survey of the Hanthawaddy district will be based.
3. Topographical surveys were in progress in Mysore, the Deccan, Khandesh, Guzerat, Kattywar and Cutch, Rajputana and Central India, in the Muzaffarnagar and Meerut districts of the North-Western Provinces, and in the Sylhet district of Assam. Eleven parties in all were engaged upon these operations, as in the preceding year. The Mysore party was to a great extent employed in mapping the Mysore and Kanara Frontier for the use of the Boundary Commission; 1,911 square miles of detailed topography were executed in the Malnad forests; and 188 square miles in the vicinity of Bangalore. The smallness of the outturn is explained by sickness and the execptional character of the country. The total area surveycl by the party up to the cad of last field season amounts to 0,316 square miles, chiefly in the Nundylroor division. About two-thirds of the State, or 18,000 square miles, remain to be surveyed in detail, of which the greater part has been covered by preliminary triangulation in advance. Of the two Decean parties, one in the sonth accomplished an outturn of $2,0.28$ square miles of topography, priacipally around Sholápur, but including also a small portion of the Konkan south-west of Mahábaleshivar. Large seale maps of the eity and cantonment of Satare were also completed. Further northwards, in the part of the Koukan prepared by preliminary triangulation during
the preceding season, the topographical survey was commenced by the second party in a hilly country covered with dense jungle. Eleven hundred and fifty square miles were also surveyed in the Decean above the Ghats. The Khaudesh party, in addition to some triangulation and traversing, completed the detail of a tract to the west and nortli-west of Dhulia in the Khandesh district, including the upper basin of the Panjhra valley. The work of the Guzerat party is published on various scales-1-inch, 2 -inch, and 4 -inch respectirely. Ordinary topography was in progress in the Almedabad, Broach, and Surat Collectorates, and in the Barodia, Mahi Kánta, Rewa Kínta and Sachin States. The 4 -inch forest survey of the Dangs was continued. The outturn of topography exceuted by this party was somewhat diminished by causes similar to those which impeded the party in Mysore. With the completion of the district of Okhámandal, at the western extremity of the Kattywar peninsula, the general survey of that province came to an end. The question whether it is necessary to fill in the breaks in the boundaries of the taluks or sub-divisions of the several Native States, can, if still undecided, be determined by the Government of Bombay. In Cutch 1,639 square miles were finally surveyed on the 2-inch seale for reduction to the 1 -inch seale on pulbication. The topographical delineation of Raputana proceeds rapidly, as a desert country offers few obstacles to the surveyor; and an area of 6,928 square miles was mapped in the Bikaneer State. The Rajputana party, in addition to its topographical work, produced a map, on the 12 -inch scale, of the city of Bikaneer, and made progress with the 24-inch surveys of the Solon and Dagshai cantonments in the Simla liills. The operations of the Gwalior and Central India party were not carried on within the territory indicated by its name. It was employed, during the season under notice, in the south of the Rajput State of Oodeypore, and in a tract to the east of the Lini river, near Sindri, within the State of Jodhpore. The outturn was small, but the country was diflicult; a great part of it resembling, in the words of Major Steel, "a petrified stormy sea." The area topographically surveyed in detail by the Malwa party in the Jhábua State of Central India was also partly and for similar reasons less ilan might have been expected. Its operations included a map on the 6 -inch seale of the city and environs of Dhair in the Native State of that name. In the Mcerut division of the NorthWestern Provinces, where a 2 -inch topographical survey of the districts between the Ganges and the Jumna is gradually progressing from north to south, the work in the Muzaffarnaggar district was brought to a close; whilst an area of about 400 square miles was mapped in the north of the Meerut district. The oljects of Major Badgley's party in the Sylhet district of Λ ssam are of a rather special character. Waste lands, which have been or may be taken up for tea cultivation, are being mapped, and a forest survey is being carried on in the southeast corner of the district. The party effected little, having been hampered by want of carriage and compelled, by heavy rain and floods, to leave the field at an unusually early date. The season, morcover, was unhealthy; and the work lay amongst dense forests, or in swampy ground. Looking to general results throughout the country, it is observed that, notwithstanding the serious difficulties which, in several instances, hindered or restricted the operations, the total outturn of toporraphy does not compare very unfarourally with that of the previous year, as will be apparent from the following figures:-

Area swereyed topographically in square miles.

	Strale.	18\%8.70.	1879-80.	Incrense or decrembe.
$\frac{1}{2}$-inch	\cdots	5,421.	7,138	+1,711
1-inch	\ldots	8,774	4,791.	-3,984
2-inch	\ldots	9,179	9,36i4	$+155$
t-inch		213	117	-111
	Todal	23,599	21,713	$-1,886$

There is thus a net decrease of 1,586 square miles. The most considerable diminution is in the outturn of area surveyed on the 1 -inch scale; and this is
duc to the decreased amount of work executed ly the Gwalior and Central India, Malwa, and Mysore partics. In each of these cascs an explanation of the circumstances which retarded progress has been given in the Report of the Surveyor General.
4. The village or manzawar surveys on the 4 -inch scale were much less extensive than in the preceding year, orring to the break-up of the party which, after the completion of the Sirsa district, had been destined for, and had actually begun work in, Jhelum. The outturn of the year was $2,118^{*}$ square miles, as against 4,491 in 1878-79; and nearly the whole of this arca lay in the Punjal). In point of fact, the village revenue survey of the old type, which was the usual concomitant or precursor of settlement operations before the work of detailed field measurement was made over, as is now generally the case, to professional surveyors, was restricted to the single district of Dera Ismail Kham. A fair outturn was obtained in the Bhakkar tahsil of this district, amounting to 1,334 square miles of the cis-Indus Thal, a tract forming part of the generally barren and sandy grazing grounds which constitute the great triangular expanse between the Indus and the Jhelum. The party has yet to execute the survey of about 3,800 square miles in the Thal of Dera Ismail Khan and Muzaffargarl. The 4-inch forest survey of the Murree and Kahuta tahsils in the Ráwalpindi district was completed; some forest reserves were mapped in the plains; and some preliminary work was effected in the Kala Chitta hills lying between Attock and Pindighel. All the other 4 -inch surveys were more or less special in charactor and very limited in extent. The survey of the Khorda Government estate in the Pooree district of Bengal had hitherto Leen classed as a cadastral survey; but, as mentioned in last year's review, a change of system has been introducel, the interior village measurements being made by the Settlement Department, and the professional party supplying loundaries and the details of the liills. In the previous Report, it was anticipated that the work in Khorda would be finished by September 1880: but this exprectation does not seem to have been realised ; for the map opposite page 19 of the present report shows a good deal of ground traversed in advance which was not surveyed on the 4 -inch seale during the season. The area completed (125 miles of 4 -inch and 40 miles of 32 -inch survey) was exceedingly small, and the cost, lis. 55,660, considerable. This amount, however, includes expenditure in completing the records of previously surveyed portions of the estate. The party suffered much from fever, and other cireumstances are mentioned in the Report which contributed to reduce the outturn. The 4-inch survey of the Jumna villages between the North-Western Provinces and the Punjal) was continucd along the Karnal and Muzaffarnagar boundary, and covered a small strip at the north-west corner of Mcerut. In the Bánda district some forest reserves were mapped on the same scale.
5. Cadastral or field surveys were prosecuted in the permanently-settled districts of the North-Western Provinces, and in several districts of the Pegu divisiou of British Burma now coming under a regular settlement for the first time. With the exception of the trifling area of some 20 square miles, the cadastral survey of the temporarily-settled district of Bánda had been finished in the preceding season. Operations were in progress to the north of the Mirzapur district, to the south and east of the Jaunpur district, and to the west and south of Gházipur. The survey of Mirzapur began, and that of Jaumpur was almost finished. The Gházipur survey is ahout half donc. The attention of the Government of the North-Western Provinces and Oudh will be invited to the romarks at page 21 of the report, where it is suggested that the Jaunpur party, on completion of its work, might have been suitably employed on the survey of the Benares district, which, however, the Licuten-ant-Governor would, for the present, defer. At the same time the Surveyor Gencral may consider whether the Jaunpur party might not be transferred to British Burma, if it is not required by the Government of the NorthWestern Provinces aud Oudh.

It was montioned in last year's revies that it had not then been finally determined whether the field or the holding should be taken as the unit of survey for the professionally conducted sethement measurements in British

[^42]Burma. This question las since been decided in favour of the field. Tro cadastral partics were at work in Burma-one in the Hanthawaddy district, under Captain Sandeman, and the other, superintended by Major Andrew, in Bassein. Operations have subsequently been extended to the Tharrawaddy district, as noted in the Report. The Govermment of India cordially concurs with the Surveyor General in acknowledging the promptitude with which the Survey Officers, and more particularly Captain Sandeman, have supplied the Settlement Department with the necessary maps and statements. This has enabled the Chief Commissioner to report the assessments of nine circles in the Syriam and Bassein townships, which were sanctioned in Tebruary last; and the Governor General in Council has much pleasure in observing that, so far, the progress made in the Burma surveys, executed, as they have been, under novel and, in some respects, diffeult conditions, has been very creditable to the Survey Department. The commendable care bestowed by Captain Sandeman on the training of Burman Surveyors has been previously noticed.
6. The subject of the " miscellaneous" surveys in the Darjeeling district has been recently under discussion with the Government of Bengal. Field work in that district has now censed; and the question of continuing the geographical survey of Sikhim, which has been partially carried out by Lieutenant Harman, the officer in charge of the Darjeeling party, will be further con. sidered on his return from leave.
7. Of other geographical operations, the most important were thoso which were conducted by the Survey Officers accompanying the several columns of the Army in Afghanistan and Biluchistan during the second phase of the Afghan War. Tho survey has been taken for the most part on the $\frac{1}{2}$-inch or $\frac{1}{4}$-inch scale, supplemented by rough reconnaissances and by native information in the less accessible places. Gencrally speaking, the detailed surrey extends from Pesháwar to Kabul viáa the Khyber pass and the Kuram valley, but excluding Bara and Tiria, and the Afridi country lying between the Peshíiwar district and a line drawn a little to the north of Thal. South-west of the Kuram valley it has taken in a great part of Khost. A radius of $\mathbf{1 5}$ miles to the north and west of Kabul, and of 50 miles to the south in the direction of the Logar valley, would approximately cover the rest of the country mapped in Northern Afghanistan. In Biluchistan and Southern Afghanistan the area delineated is much less compact. With some breaks, which were merely reconnoitred, it may be described as reaching Girishk on the west from Fort Munro on the Dora Ghazi Klan frontier. It includes Khushk-i-Nakhud, the country around Kandahar, a great part of the Khojak-Amran range, Pishin, a tract to the north and north-east of Quetta, and the neighbourhood of Dada and Sibialong and to the west of the line of rail. The northern and southern surveys have been connected by the survey of the route from Kandahar to Ghazni through the Khushk-i-Rud, Tarnak, and Ghami valleys. The total area mapped during the season in Northern Afghanistan is estimated at 11,180 sfuare miles; and the Surveyor Gencral is invited to state, in his next report, the total area mapped or reconnoitred by the Survey Department, whether in North or South Afghanistan or in Biluchistan, throughout the whole period of the military operations.
8. The Gorernor Gencral in Council has again to notice with much satisfaction the distinguished and valuable services of the Survey Officers during the war. Wis acknowledgments are due to the military offeres and the civilian surveyors mentioned ly the Surveyor Gencral in tho Report; and more particularly to Captain IIoldich, R.e., who was in charge of the survey of Northern Afghanistan; to Major Woolthorpe, r.e., who executed much important work in Kuram and accompanied General Ross on his mareh through Maidan to meet Sir Donald Stewart on his advanee from Kandahar; to Licutenant Gore, who was attached to Sir Donald Stewart's foree on this oceasion and effected a junction with the survey brought down by Major Woodthorpe from Kabul; to Licutenaut-Colonel E. P. Leach, F.c., whose report on hisoprations in Southem Afghanistan has been soparately arknowledged; and to Lieutenants the IIon'ble M. G. Tallot and Longe, who were with Gemeral Sir F. Roherts on his memomble mareh from Kabul to Kamlahar and were present at the lattle which succeded it. The Governor General in Comencil has further observed the foot-note at page 36 of the report which recounts the valuable service rendered
by a Native explorer near the Sherpur cantonments and in Kafiristan. The Survoyor Gencral should report whether this man has received any special reward, and, if not, whether he deserves one.
9. The remarks of the Surveyor General on the general organization of survey operations with an army in the field will be brought to the notice of the Niilitary Department and of the Secretary of State in continuation of previous papers on the same subject.
10. Good progress is reported in tidal operations, which is duc to the efficient superintendence of Captain Baird. Tidal instruments were set up at six additional places, and ohservations are now made at thirteen tidal stations, riz., Aden, Kurrachee, Bombay, Karwar, Beypore, Paumben, Madras, False Point, Rungoon, Elephant Point, Moulmein, Amherst, and Port Blair. The several stations are being connected by lines of spirit-levels; and levels will be taken during the course of the cadastral surveys in British Burma. The electrotelegraphic operations for the determination of differences of longitude again remained in abeyance, as no officers were available for the work.
11. The issues of maps from the Surveyor General's office in Calcutta increased from 28,737 maps, valued at Rs. 38,274 in 1878-79, to 33,706 maps, of the value of Rs. 57,005 . There was a large demand for maps of Afghanistan and the North-West Frontier; and much new geographical material was utilised with great promptitude. A preliminary edition of the map of India, on the seale of 1 -ineh $=64$ miles, was published ly the Lithographic Branch to meet immediate requirements. The number of cadastral maps of the North-Western Provinces published during the year was 2,527 . Many of these had been plotted during the field season of 1879-80, and the great majority of them were photozincographed. Numerous maps of the Khorda Govermuent estate were reproduced by the same process. The Nathematical Instrument Department issined during the year 14,103 instruments, valued at Rs. $1,07,230$. The further details given of the working of the head-quarter offices at Caleutta do not call for any remark.
12. At Delira Dín the work of the final reduction of the observations and measurements of the Great Trigonometrical Survey is progressing satisfactorily. Vol. VI of the account of theoperations is being pullished; Vols. VII and VLIL are under preparation; and the printing of Vols. IX and X has commenced. Three of the synoptical volumes, containing a precis of the results of the triangulation, were published, and three more were completed but not bound.
13. Several of the extracts from the narrative reports of the executive officers given in the Appendix have been read with interest. Amongst these are the notes of Colonel J. Macdonald on the Konkan, of Captain Sandeman on the Syriam township, and of Captain Holdich on the Logar valley. The remarks of Captain Heaviside, of the Khandesh Survey, on the Mangya Tungya hills and the Balsána temples, will be communicated to the Divector Gencral of the Auchtrological Survey. Lientenant-Colonel Tanner's report on the surveys around Gilgit, and the translation of the notes of the Native explorer on the Irrawaddy river above Bamo, contain interesting information on remote localitics hitherto little known.
14. The thanks of the Gorernment of India are due to the Surveyor General for his able superintendeuce of the Department.

Order.-Ordered, that copies of the Resolution be formarded to the Sur-		
me.	an lirovinces.	veyor General of India; to the Local
Bment.		Governments noted in the margin; and
N.		to the Foreign and Military Departuents.
Director Gencral of the Archoological Survey		

True Extract,
GoVERNMENY of india.
HOME, REVENUE AND
\qquad
SURVEYS.

RESOLUTION.
-

No.

Dated Simla, lhe May 1881.

Stoject.
Revien of the General Report on the operations of the Survey of India during the year 1879-80.

[^0]:

[^1]: dons hia work chewiuly and well; also Lhat Mr. Turreng did good work iu the Kelat Series, under exeptiondly trging curcumanates.

[^2]: - Cuptnin Hill intimates that the site for the proposed base line in Southern Tenasserim which wens selected by Mr. Low is very unpromising, and that further recomoissmee will prombly leat to the discovery of a better site. He
 解 as his services can be spared from this Department.

[^3]:

[^4]: Frablished undor the direction of Major Genctai J.T. Whiker, O.B., B E., F.R.S, Surveyor General of Indias

[^5]: - Colonel Depree reports favon:ably of wll the members of his purty, and sprecially mentions Mr. Mctill, the n.jior survery.

 jroved wers valuable in fomedalling some of the dillioultive to be met with in that district.

 Mossts, Chew, Toorek, Kitchou, Stotwhury nad Flemming.
 would doublloss have beal entilled to ergul eredit, with the others.

[^6]:

[^7]:

[^8]: "In nearly every case arbitration by a panchayet was adopted, this being approved by the people themselves. The advice of Mr. Todd (the Surveyor) was eagerly songht for by the people regarding their boundaries; and the presence of an European Surveyor undoubtedly enabled the disputes to be settled, and without him no decision could have been come to. The zemindars told Mr. Todd plainly that they were agrecable to whatever boundaries he laid down; but he informed them that it was impossible in most casts to lay them down accurately, as the thakbusts were worthless, and for this reason arbitration had to be employed."

[^9]: Tbe numerals $1,2,3$ \&e, indicate the ehects on the scale of one inch to the mile The numerals I, II, III \&C., indieate die degrree shects, on the seale, of $\frac{1}{t}$ inch to the mile The one inch shects are divided into 4 sections known as the N. E., N. W., S. E., \& S. W., sections of the sheet; of these a few copies will be publibhed on the Scale of the
 original Surrey, ví., 2 inches to the mile for the use of local officials.

[^10]: - Mnjor Wilkins har reported on his Aesistants ns followe:-

[^11]: * Colonel Mucdonald reports most favorably on the comb services of Mr. G. JI. Cooke, Assistrint Superintendent, and

[^12]: and Kuight being spronllf commended ly Mr. Mctill. Of the untive estuljishonent, Toolsee Rum, Anant Narain, 3:allo Sug ee, nud Clammoo Memare mentioned by ume for their good services.

[^13]: " It is a portion of what is termed the 'Thal' (or sandy region). The country, as the name indicates, is sandy and barren, covered with anod-hills more or less permanent. Hamlets are few aud far between, with a well or two surrounded by a few fields. Small tanke are scattered about over the face of the country, where flocks are occasionally watered after a rainfall. Melons are largely cultivated as might be expected from the nature of the soil."

[^14]: "There is no such itcm separately recorded on the maps as 'fit for cultivation ; the whole area almost might be included in this item, if water conld be made available. The distance in fect hetween the surface of the ground and the surface of water in nells at the time of surver has been indicated on the majes in the usual mander."

[^15]: Thatorinoographed ot the Surver Garal's Oftion Calicuith

[^16]: * Libutconal.Colonel Macdonald has expresserl himestf satisfied with the wnouer iu whied the establishments, buth Europrent aud Native, have worked during the field and receps ceasuuk

[^17]: "No field sketch books have been compiled for final record. It was believed that the abolition of the field sketch book would save much time and expense both in the field and recess. In order therefore to reduce the rates, the compilation of these valuable records was done away with; but after the trial of a whole field season, I can confidently express my opinion that the saving has been effected only during the recess, and that there it is limited to the operations connected with paging and indexing. For, whether compulsory or not, the

[^18]: - Mr Cemplbell reports of his assistants

 Mr. Vyall thoronglily understands his duties noml is a deserving officer.
 Mr. Dunne " rendered escellent servioce in the filld."
 Messen Jarbo and Scotl "wlon josinced the party in April have benn of great bejp to me."
 Amongst the Native Eatahlishment, Venket Swnmy is said to atand conspicmona ns an excellent Sub-Surveyor.
 Jouna Lall, Sumeyr Sing, Bepin lehari Dose and Ílinnchander are suid to be desurving men.

[^19]: * Culunel dimerson reports favourably on Messra. Camphell, Little, II. B. Smarl, Freemmen, and Hill.

[^20]: - Mir. Juhnon reports very highly of his senior assistants, Messrs. Cowler, Pemberton, O'Donel and Swiney.
 thenir hutios.

 Mr. '. livett, Subsurveyor, is well reported on, and also the following individunls of the Native establishanent, 1:. -

 Ihilum (inru Pershad Chuckerbutty, Slimbliu Noth, Kanhia Lall, and Kedar Natb, Computers ; nnd Chuinni Hyder Klam, Irafloman
 libe Niutive Dortor Ilussick Iall Mookerjee is said to have bren netentive to his duties.

[^21]: - Major Rarrom commema Masera, Wilson, Hunby ond Malras for the wny itl which they superviaed the

[^22]: - C'aptain Sindeman reports of Lis Assiatnats ne follows:-

[^23]: * Major Andrea raportao Mr. J. H. O'Donel, that he has given entire antiafaction in all lie has andertaken einec he joined the party, on 30 th J uly.

[^24]: - I, ieutenant. Lurman reperta that the stendy, persistent manner in which Mr. Robert achieved all that he attemptad, and all thut could possibly have been expectexl of him, is most praiseworths.

[^25]: - Cnpénin IIoldich reporls as followa of the services of lhese men:-
 "The Sunchi curviel on the mapping (but the large srule of bur iuches to the mile) of the Sherpur rontanmenta, and of the comery immeliately ramil it, during the actual progress of the investment, and lhins rally execuled some

[^26]: - Majar Denvan reporta that "both Mesers. Conen and Corkery hava nudergone ngrent nmaunt of vary hard wort and hald difficulties nud privatinus to encounter. The work they hive turned out hat beon carefully done, and they bnve succerded in dealing with the Pathan and Belachi inhmbitanta of the country without ruinitug opposition or prorabiug coupluiut, which I consider bighly creditable to them."

[^27]: * Mr. Beverley joiued the Tidal Offire in July 1880, and was taken, with Mr. Melolum, on a tour of obseryntory uspection by Cupliit biaril in the following Seplember, in order to nequice "knowledge of tho instrunenta and generit arrangements, Mr. Jenchul has been enpiluyd almast ontirely in the evection of the new observatories, and hins worked well. Mr. Connor has bet . Nulely comploged on the caleulntious: he is most paingtaking and diligent, and his servicen have been very valunb,' Whandu Vinuyek, Suh. Surveror, is one of the lew eluented lrahining who is rendy to travel angwhe by lund or sea: : momont's nutice, without demur; he has been chicfly employed in tenching the observatory clerks their cluties, winth he does viry well.
 t Captain llaicel reporta tiant buth Mri. Beleham and Narsing Dass have done work which is very good and to his entire sutisfuction.

[^28]: Corresuphdence Brunch, Lave discharged their dution antisfactoriy.

[^29]: - Mr. Janers reports as follows:-

 porsing lorush-slanding into vertical lachure-shading.

[^30]: - Mr. A. Chamarette, Survepar and Ifend Emaminer, dererves much eredit for the zonl and ability with which be performu lis duties; bis nasistant, Mr. A. J. Wilsod, las forked well and ahowe mach aptitudo as en examiner. Uabure l'urna Chundra Sen has given antisfaction.

[^31]: * Mr. C. W. Comrd, Superintendent of Engravers, has performed his duties satisfactorily nuel has paid cond

 satisfactory. Messrs. D. Mitchell nind A. Pnimer, hill-etehers, have worked well. Mr. S. Comel hus Doen very suecessful in stecl-fucing the congraved plates of the Indian Athas and has shown considerable skill in licelanical
 cteling and are ehle now to. Interen shure in regular work. Several of the native elugraverg have made groel progress

 \dagger Early in the yor Mr. T. W. Halinan was mpininted registrar in this ofice and was ancecoded in the pust le previonsly heh of Map Curator by Mr. IR. A. Gibson.

[^32]: - Mr. F. W. Kclly, Surveyor 1st grade, has contimed to do excellent worle na Head Assistant in the drawing branch. Mr. Sinclair's duties in connection with the publicatiou of the endastral maps have been very laborious, und Je bong given entire antisfurtion.

 Mears. J. A. Mny, 'I'. W. Reilly, J. Connor and W. J. Lane, Surveyora and Draftamen, have all worked well in their own branches of the ollice.

 Mr, A, E. Пyri, Mr. A. C. Cumninghom, Mr. Gopal Clunder Laha, Maboos Harrihar Sen, Knllypudo Hanerjie, Doorganarain ghore und Juin Nath Monkerjee together with the rest of the estnblishment, have all given sitisfaction.
 \dagger lu June lost, Mr. Jerezy, who had heen Hend Assistant for 10 y ears, obtained furlough to Europe, nad his duties have since been perfirmed hig Mr. Lepage.

 Captuin Riddell states that the following Draftamen are worthy of apecial mention, on account of their akill and пasidnity :-

 Holoram Nath, Mahomed Azim, Dino Nath, Umbica Churn Mookerjee, Alducl Hamid, Abdool Morjid, Mabomed Yeasinand Deno Nutb Dase.

[^33]: - Major Cowan penks very favourably of Mcagra, J. Mackenzie, B. Mockenzic, J. Harrold, aud Cadify also commends Meare. Marshall. Languier, and LeFranc.

[^34]: (In) was invalided to Enroje as unfit for further sorvice in Indin. Thus the duties of Enstrument Muker agnin desolveit on Mr. Buiton, ly whom they have been enrried ont very antisfoctorily. Arrangements bave been made to seenre the services of a trained Asgistant Matbematicul Instrument Maker from England.

[^35]: - Mr. Hennessey acknowledges the valuable assistance be has received from Mr. Cole in general co-operation and appervision.
 He also reporta very favourally of the anrvices rendered by Mr. Wood, and Bnboos Ounga Perand and Cally Hoban Ghose in the Cowpuling Offica; and commends Siessra. Aikinson, Peychers, Olleubach and Dyson.

[^36]: Deputy Sunveror Genfral's Opficb,
 Caichlla, lat October 1500.

[^37]: * Since hlis was writton, I have cimputed all he triangulations and intersected pointe, and worked out all the longitudea and latitudes of the recondary rentions and "f ull the intersected pointa liset are proved.

[^38]: - Tho rivar hers is over a mila wide, full of saod bnaks nod small chazaels. The bauk is atecp, in two atepa, tho lowor tmelve fect in beight, the upper eight or nine fect.

[^39]: - This infomation was ongrined by n man of Zeegyood who also bid beon there, but whose name be bes furgotten.

[^40]:

[^41]: -The establibhmeut bills will atill be rept separate.

[^42]: * This includes 10 wiles of 32 -ituch survey in Pwores.

